
Comparing different feature extraction

techniques on time series classification with a

feedforward neural network

Machine Learning Project 2020-2021

Hristo Stanulov, s4287606

Ritten Roothaert, s2929244

Kaan Yesildal, s4467787

Alfiuddin R. Hadiat, s2863685

Abstract – This paper compares different fea-
ture extraction methods on a feedforward neu-
ral network time series classifier. The Japanese
Vowel dataset is used, which consists of 12 cep-
strum coefficient channels of 9 male speakers
vocalizing the vowel “ae”. The project aims to
apply various feature extraction methods to re-
duce the method’s dimensionality and compare
their performance with a 3-layered feedforward
neural network. An evaluation pipeline using
cross-validation is used to evaluate the models
across varying dropout rates and find an optimal
model. Despite achieving an accuracy of 78.3%
with the testing set, it did not reach the per-
formance of a baseline neural network that used
zero-padding. Further points are explored in the
discussion section.

1 Introduction

Time series is a prevalent form of data structure found
across diverse fields that are used for a wide variety of
different machine learning tasks. The focus of this pa-
per is to investigate the influence of different feature ex-
traction methods on the performance of a feedforward
neural network classifier. Specifically, a classifier for a
dataset found on the UCI dataset repository (5) and
first collected by Kudo et al. (6). In the last 20 years,
machine learning researchers have used the dataset to
evaluate a variety of different classifiers.

Generating an accurate classifier for this dataset is
not trivial. The dataset contains the recording of 9
Japanese men saying the vowel “ae”. There are 12 chan-
nel recordings, and each sample length ranges from 7
to 29 data points for the whole dataset. In other words,
the lengths of the features are not uniform. We can see
this non-uniformity in Fig. 1.1, which shows the dis-
tribution of sample length for a single channel in the
training set, where the maximum length is 26. Before

Figure 1.1: Distribution of length for all time-
series within channel 12

a classifier can be trained, the dataset should either be
transformed to have uniform feature lengths or extract
other features from the dataset.

Researchers have used different approaches to gener-
ate a classifier for the dataset. Section 2 explores a se-
lect number of these approaches. Three feature extrac-
tion methods were investigated for feedforward neural
networks. The first is the sample segmentation used in
(3). The second one is also sample segmentation, but
with filling the missing data with zero-padding and the
third is passing-through-regions technique proposed by
Kudo et al. (6). Specifically, the binning procedure of
PTR is used to generate features for the neural network.
Moreover, PCA is used for this approach to reduce the
dimensionality of the features.

2 Related Works

Over the years, research has shown that most contem-
porary competitive classifiers work on time series data.

1



For example, a stacking solution was used to generate
classifiers for a variety of publicly available time-series
data (7). The results showed that standalone machine-
learning algorithms, such as decision trees and support
vector machines, were able to achieve good accuracy
scores with the time-series datasets. When placed into
an ensemble classifier, the stacked algorithms achieved
even better accuracy scores.

Other research found similar results with these
machine-learning algorithms. A decision trees using a
split-criterion for time proximities achieved a perfor-
mance on par with other classifiers, such as hidden-
Markov models and time segmentation approaches (1).
A support vector machine was able to achieve good per-
formance when it used featured generated from boost-
ing (8). Several forms of self-organizing maps were able
to perform well on time-series data (2). A particular
self-organizing map, Merge SOM, achieved an error rate
of 1.6% with the Japanese Vowel dataset (9).

The research tells us that there are several valid
methods for time-series classification. One method we
are particularly interested in is the passing-through-
regions (PTR) classifier developed by Kudo et al. (6).
PTR will be further expanded upon in section 3. For
now, it is enough to note that the PTR was able
to achieve a classification accuracy of 94.1% with the
Japanese vowel dataset. We are interested in whether
the PTR can generate features that would improve a
feedforward neural network classifier for the Japanese
Vowel dataset.

3 Methods

The process of time-series classification, like most other
classification tasks, can be divided into two major com-
ponents: feature extraction and training the classifi-
cation model. The Feed-forward Neural Network used
for the classification requires an input vector xi where
xi ∈ Rn and n is fixed. This is however not the case
with the original data set used. As the length of the
signals within the training data varies between 7 and
26 units, the dimensionality of xi varies between the
shortest signal xmin ∈ R7×12 and the longest signal
xmax ∈ R26×12.

To overcome this, we implemented three feature ex-
traction methods fseg n(x), fseg z(x) and fPTR PCA(x)
such that (fi)i∈{seg n,seg z,PTR PCA} : Rm → R60

where m ≥ 60. This implies that regardless of the di-
mensionality of the input data, it is transformed into a
feature vector of length 60. The output of the feature
extraction methods has the same dimensionality, such
that an easy comparison can be made between the re-
sults of the models trained using the different feature

extraction methods. The number of extracted features
is set to 60 as this will ensure dimensional reduction
from the 7∗12 = 84 dimensions of the shortest training
signal.

To look at the effect of the feature extraction meth-
ods, a baseline method is included as well. This method
fbase will simply zero-pad all the training signals in X
such that they match the length of the longest signal
xmax ∈ X. As the longest signal in X has length 26, this
method provides a mapping fbase : Rm → R312. While
it does not directly match the output dimentionality
of 60, training a different model on these features does
provide an estimate on what is possible if no variability
in the data is lost.

3.1 Segmentation

The first and simplest feature extraction method is the
naive segmentation method fseg n (proposed in (3)).
This method divides each signal into k equally sized
parts and for each channel, calculates the average value
of x. By setting k = 5, 12 ∗ 5 = 60 features are ex-
tracted from each signal creating a feature mapping of
fseg n : Rm → R60. A downside of this method is that
the length of the original signal, which is arguably an
important feature, is not represented in the extracted
features.

This is less of an issue in the second feature extrac-
tion method, fseg z. This is a variation on the naive seg-
mentation method, but before a signal is divided into k
equal parts, the signal is zero-padded such that it has
the same length as xmax. Afterwards, the same proce-
dure as for fsegn is applied. By first zero-padding the
signal, shorter signals will in general have a value closer
to 0 towards the end of the extracted signal compared to
longer signals, allowing them to be distinguished from
each other more easily.

3.2 Passing Through Regions

The final feature extraction method fPTR PCA is a
more complicated feature extraction method and has
two components: an implementation of the Passing
Through Regions proposed by Kudo et al. (6) (fPTR)
and an implementation of Principle Component Anal-
ysis (fPCA) to obtain the desired output dimensions.

Given N training samples in training data set
X where a single training sample is denoted by
(xi)i=1,...,N , the fPTR(xi) method is described as fol-
lowed. First it subdivides the entire input space into a
grid. It uses U equally spaced vertical lines which are
located from 0 to the maximum length of all training
samples in X and V equally spaced horizontal lines,
located from the minimal value of x to the maximum

2



Figure 3.1: Bits related to K=3 for R and Q, as
explained by Kudo et al. (6)

value of x. For all possible rectangles
(
U
2

)
·
(
V
2

)
within

the discrete domain of this grid, it is counted how often
the signal of one channel passes though this rectangle.
This count is translated to a bit-signal with the use of
parameter K. For all values k ∈ {1, 2, ..,K}, one bit
is set to 1 if the signal passes through the rectangle
at least k times and set to 0 otherwise. Another bit is
set to 1 if the signal passes through the rectangle less
than k times and is set to 0 otherwise. A graphical rep-
resentation of two arbitrary passing through regions in
combination with the associated bits is shown in Figure
3.1. The process is repeated for all dimensions n, where
a dimension is analogous to a channel in our current
problem. The final result of this method is a feature
vector of length B where

B = 2nK

(
U

2

)(
V

2

)
(3.1)

When this algorithm is applied, it provides a feature
mapping of fPTR : Rm → RB . We decided to use the
parameter setting from Kudo et al. (6), where U = 4,
V = 20 and K = 3, as it is reported to yield good
results. A major downside it that B is substantially
bigger than the original number of input dimensions
(fPTR(x) ∈ R82080 compared to xmax ∈ R312).

We decided to reduce the dimensionality using PCA,
part of the sk-learn library. This is done by first trans-
forming the original training data set X by applying

x′i = fPTR(xi) for all i ∈ {1, ..., N} and combining these
x′ into the new dataset X′. Using the first 60 principle
components of X′, a feature mapping fPCA : R82080 →
R60 is created in which 80.6% of the variability in X′

is preserved. By combining fPTR and fPCA, the final
feature-mapping fPTR PCA(x) = fPCA(fPTR(x)) is cre-
ated where fPTR PCA : Rm → R60.

3.3 Classification model

For this project, a feed-forward neural network is used
to train the input data for the experiment. A feed-
forward neural network is an artificial neural network
which consists of number of interconnected processing
units called neurons. Each of these neurons are mod-
elled from a single processing unit called a perceptron
which is used to linearly separate the input data into
many partitions using an activation function. Neurons
are connected via synaptic connections. These connec-
tions send the input data into to next perceptron to be
processed by an activation function. Each of these con-
nections are associated with a synaptic weight which
is multiplied with the input data before the activation
function of the perceptron uses this to process the in-
put data to generate a new output. The structure of
an feedforward neural network can be represented by
a weight matrix W where W(i, j) = wij is the weight
link leading from unit j to unit i. The activation func-
tion f computes the output of the neuron using the θ
as the vector of input weights and u as the activation
function such as: x = f(u,θ). Generally, a multilayered
feed-forward neural network consists of one input and
output layer and many hidden layers.

3.3.1 Feedforward Architecture

For this experiment a feed-forward neural network
with 2 hidden layers is used. This architecture is a
rather shallow one. This is because although increas-
ing the number of hidden layers give more separa-
bility to the data, it is more computationally expen-
sive. Furthermore, it can cause poor generalization
performance. Multi-layered neural networks are bet-
ter suited for tasks that have much more samples
than the current experiment. Thus, only 270 train-
ing samples and 9 classes it is more suitable to use
feed-forward neural network with only 2 hidden lay-
ers. The input dimensionality is 312 for the baseline
method and 60 for the rest of the methods. The num-
ber of units in the input layer for all of the methods
equals to inputdimensionality. The number of units
in the first hidden layer is 2*inputdimensionality.
The number of units in both the second hidden layer is
int(inputdimensionality/2) and the output layer is

3



9 for all of the methods. Batch Normalization is used
for rescaling the layers of the network. This is required
because for each batch the inputs to layers distribution
might change and this may cause the algorithm to not
converge. This is avoided by standardizing input layers
for each layer of the network. Batch normalization is
used between all layers in the network.

3.3.2 Activation Function

The activation function preferred for the task is the
Rectified Linear Unit (ReLU) which is known as the
rectifier unit. It can be modelled as follows:

f(x) = x+ = max(0, x) (3.2)

This activation function is a piece-wise linear unit. This
property of non linearity enables successful application
of back propagation given that the ReLU function can
be differentiated many times which protects the back
propagation from diminishing gradients problem. Mini
Batch Gradient Descent is used in the training phase.
This method decreases the computation time signifi-
cantly given that it divides the input data into many
partitions(batches) and applies gradient descent on all
the batches separately. 10 batches with 26 data samples
are created for mini-batch gradient descent.

3.3.3 Loss Function

The cross entropy function is used for the loss function.
Cross entropy function is a modified version of the neg-
ative log-likelihood of the softmax activation function.
The softmax function is as follows:

S(fyi) =
efyi∑
j e

fj
(3.3)

The softmax function takes the ratio of correctly clas-
sified labels over all the classes to assign probabilities
to each observation. Then their negative log-likelihood
is calculated as follows:

Loss(y) = −log(y) (3.4)

and all the negative log-likelihood values are summed
over all the classes. This is modelled as follows for the
binary classification case using cross entropy:

loss = −(ylog(p) + (1− y)log(1− p)) (3.5)

For multi-class problems the loss function becomes

loss = −
M∑
c=1

yo,clog(po,c) (3.6)

, where M is the number of classes which is 9 in this
case. y is the binary index if class c is the correct classifi-
cation for observation o, p is the predicted probability of
observation o belonging to class c. This activation func-
tion is commonly used where there are multiple classes
to classify. For each class, a probability p is calculated
for every observation to assign that observation to the
class of the highest probability. This is possible because
of the softmax function (10).

3.3.4 Regularization

Dropout is used as a regularization technique in both
hidden layers. Small datasets can lead to overfitting so
dropout method randomly chooses a fraction of weights
and only trains them at every epoch. This allows for
better generalization of the data by allowing for learn-
ing of sparse representation of the data. Dropout can
cause the data to become noisy given the fact that only
a small number of neurons are shown to the previous
layer for training. This is caused by training sub op-
timal neurons because of the absence of the optimal
neurons. To avoid this, the weights are averaged over
all of the 26 batches.

3.3.5 Optimizer

Adam optimizer is chosen for the problem (4). Adam
optimizer is widely used for deep learning tasks as a
more robust version of the stochastic gradient descent.
It provides reliable optimization when there are sparse
gradients. This is suitable for our case given that a shal-
low feed-forward neural network is used with dropout
as a regularization method. This is prone to creating
noisy weight vectors because of the small number of
weights trained every epoch.

The algorithm calculates both the moving average of
the first moment which is the mean, but also the sec-
ond moment which is the variance. Thus, this enables
Adam to keep track of the change in the moving av-
erage while comparing this change to the variance of
the gradient. Thus, it does not get stuck on local min-
imums that cause high oscillations in the gradient and
can adaptively adjust its learning rate to accelerate the
learning process. The usage of the first gradient enables
Adam to be computationally inexpensive and to use a
small memory size. This adaptive change in the learn-
ing rate is suitable for noisy and sparse gradients. On
initialization of the network the learning rate is set to
0.001.

4



4 Experimental Design and
Results

4.1 Experimental Design

The experimental design aims to compare the perfor-
mance of the feature extraction methods with the base-
line method. As described in section 3, both the baseline
method and feature extraction methods yielded four
different datasets. It is important to mention that the
feature dimensionality of the baseline dataset is 312,
while the other three methods have 60. Comparing the
results between the baseline method and feature extrac-
tion methods tell us whether the feature engineering
improves the performance of the neural network.

The experiments were conducted via an automated
pipeline described in algorithm 4.1. The pipeline pro-
cesses the data, cross-validates the model, and saves
the result. Almost all neural network parameters were
held constant for experimental validity. The only vary-
ing parameter was the dropout rate, which is set for
both hidden layers. Varying the dropout rate tells us
the performance of a given method for dropout rates
ranging from 0 to 0.8 with a step of 0.1. More specifi-
cally, changing the dropout rate tells us what complex-
ity yields the best accuracy. K-fold cross validation with
k = 27 and a batch size of 26 are used to split the train-
ing sets into 10 even batches. Given the small size of
the dataset, each neural networks trains for 200 epochs
with a learning rate of 0.001. These settings prove suf-
ficient for generalization.

As already mentioned, the models are evaluated
through 27-fold cross-validation. A higher than aver-
age fold was used so that the 270 training samples can
be split into folds with 10 samples. While this is compu-
tationally expensive, the low amount of epochs makes
this a viable option. Cross-validation allows us to coun-
teract overfitting as training and evaluating across all
folds yields each model’s general performance.

The neural network was implemented using PyTorch
running on an NVIDIA GTX 1660 Ti. Each method
yielded 243 models, which totals to 972 models across
the four methods. For analysis, the accuracy and loss
scores of each model are averaged across all folds. The
averaged scores are used to evaluate the performance
of each model. The feature engineered model with the
highest score is determined to be the optimal model. A
comparison in performance between the optimal model
and the baseline model determines whether the fea-
ture extraction method improves the performance of
the neural network.

Algorithm 4.1 Cross-validation of a feature ex-
traction method

for dropout rate = 0.0, 0.1, . . . , 0.8 do
for k fold = 1, 2, . . . , 27 do

Prepare the data
Create train and validation sets
Initialize the neural network with uniform
weights and biases
for epoch = 1, 2, . . . , 200 do

Train while iterating through current
training batches
Validate on current validation batch

end for
Append training and validation accuracy in
a list
Append training and validation loss in a list

end for
Save results into a serialized dictionary of lists

end for

Figure 4.1: Validation Accuracy of all neural
networks

5



Figure 4.2: Mean Negative Log-Likelihood Loss
of all neural networks

Figure 4.3: Training and Validation of neural
network using PTR with PCA

Figure 4.4: Confusion matrix of PTR with PCA
neural network classifications on test dataset

4.2 Results

The validation accuracy score of each neural network is
shown in figure 4.1. The line plot describes the rise and
fall in accuracy across different dropout rates. Except
for the baseline model, all models achieved their highest
accuracy rate with a dropout rate of 0.5. In all mod-
els, the accuracy rate before and after 0.5 is shown to
decline. We can see the same trend in figure 4.2, which
describes the negative log-likelihood loss of each model
across models. Again, except for the baselines model, all
models achieved their lowest loss with a dropout rate
of 0.5. Figure 4.3 shows the training and validation ac-
curacy for the PTR with PCA model. The figure shows
the validation accuracy peaking at a dropout rate of
0.5, which is further evidence for 0.5 being the optimal
dropout rate.

According to the accuracy and negative log-
likelihood loss scores, the most optimal model is the
PTR with PCA. Figure 4.1 shows the model has a
better accuracy score than the second-highest accu-
racy score, which is the 5-segmentation zero-pad filling
model. While the accuracy difference is marginal, figure
4.2 shows a clear difference in negative log-likelihood
loss, with the PTR with PCA model having the lower
loss. As such, the PTR with PCA model was chosen as
the optimal model. The model was evaluated using the
testing dataset set aside before training.

The optimal model did not reach the performance of
the baseline model. This would suggest that the fea-
ture extraction methods did not improve the feedfor-
ward neural network. Even though the dimensionality
was reduced, the raw data with zero-padding yielded
the better result. Possibly, the result is due to the zero-
padded raw dataset having more dimensionality. Simply
put, a higher dimensionality gives the neural network
more variance to work with, which results in better op-
timization.

The PTR with PCA neural network model was able
to achieve an accuracy of 78.3% and a negative log-
likelihood loss of 0.83 with the testing dataset. This
means that the model can make more accurate classifi-
cations than random guesses. However, there is a par-
ticular issue with the model. Figure 4.4 shows a con-
fusion matrix of classifications made by the model on
the testing dataset. The figure shows us that the model
was able to achieve accurate classifications with all but
the ninth class. This result suggests that the model has
classification issues with the ninth class but the reason
behind it is not investigated in this paper.

6



5 Discussion

There were several significant obstacles that we ran into
during the course of the project. The first issue was de-
termining what feature extraction methods would fit
with a feedforward neural network. The second was fig-
uring out how to implement the methods for the neu-
ral network. We chose to leave out two feature extrac-
tion methods. We planned to include a peak detection
approach but ran into difficulties. Relating peaks to-
gether involved the creation of a Bayesian network that
resulted in highly correlated features. Further informa-
tion also had to be extracted through dimensionality
reduction, which resulted in a bias towards certain fea-
tures over others. We also wanted to include average-
padding. The method involves extending a sample’s
channel by using the average value of that channel at a
given time step. The method performed worse than the
zero-padding segmentation technique, so we deemed it
redundant.

Our goal was to see if the feature extraction methods
would improve a feedforward neural network compared
to a baseline model that employed zero-padding. As
shown by the results, the reduced dimensions did not
appear to improve the performance of the model. This is
possibly due to the fact the neural networks have more
weights to optimize if it is given more input dimen-
sions to work with. Understandably, the baseline model
would do better simply because it has more variance in
the dataset to work with. Either the feature extraction
methods do not improve the performance of a feedfor-
ward neural network classifier for this time series, or
our implementation of it lacked the finesse that would
have improved it. Given the confusion matrix shown in
figure 4.4, the model appears to have a terrible time
classifying the 9th class. Had we more time, we would
have investigated the temporal structure between the
9th class and the 3rd class – as the model appears to
misclassify the 9th class as a 3rd class – and address
the similarity somehow. Indeed, we believe this is one
of the main issues with the model.

More personally, we ran into issues figuring out
how to translating the feature extraction methods into
python as we are individuals still struggling with math-
ematical notations. The biggest example of this was
the passing-through-regions classifier. The paper (6) ex-
plained the concept in technical English, but the ac-
tual implementation required a thorough understand-
ing of the mathematics. We were able to successfully
implement the feature extraction method such that it
resulted in features we were able to use for the feed-
forward neural network, but only after we reduced the
feature dimensionality from 82,080 to 60 using PCA.
In spite of the difficulties, the struggle with the mathe-

matics made us better at replicating methods from such
papers.

We would have been interested to see what the com-
plexity costs are for these feature extraction methods.
We assume that the computational cost of PTR with
PCA is more expensive than either zero-padding or seg-
menting because the former involves more processing.
The time it takes for PTR and PCA alone is substan-
tial; the combination of the two is possibly very expen-
sive. Unfortunately, we neither had the time to analyze
the time and computational complexity of the feature
extraction methods, nor did we think it would fit the
scope of this paper. This interest would fit were our
goal to figure out a deployment pipeline built it repeat-
edly transform and learn from a model every few weeks
or so. Perhaps for a future project, we could investi-
gate the efficiency of including our feature extraction
methods in a more engineering-focused domain.

References

[1] A. Douzal-Chouakria and C. Amblard. Classifi-
cation trees for time series. Pattern Recognition,
45:1076–1091, 2012.

[2] B. Hammer, A. Micheli, N. Neubauer, A. Sperduti,
and M. Strickert. Self-organizing maps for time
series. Proceedings of WSOM 2005, pages 115–122,
2005.

[3] M. W. Kadous. Learning comprehensible descrip-
tions of multivariate time series. In ICML, volume
454, page 463. Citeseer, 1999.

[4] P. D. Kingma and J. Ba. Adam: A method for
stochastic optimization. arXiv 1412.6980, 2017.

[5] M. Kudo, J. Toyama, and M. Shimbo. Japanese
Vowels Data Set. Retrived 1 December, 2020, from:
https://archive.ics.uci.edu/ml/datasets/Japanese+
Vowels.

[6] M. Kudo, J. Toyama, and M. Shimbo. Multidimen-
sional curve classification using passing-through
regions. Pattern Recognition Letters, 20:1103–
1111, 1999.

[7] O. J. Prieto and C. J. Alonso-Gonzalez. Stacking
for multivariate time series classification. Theoret-
ical Advances, 18:297–312, 2015.

[8] J. J. Rodriguez, C. J. Alonso, and J. A. Mae-
stro. Support vector machines of interval-based
features for time series classification. Knowledge-
Based Systems, 18:171–178, 2005.

7



[9] M. Strickert and B. Hammer. Merge som for tem-
poral data. Neurocomputing, 64:39–71, 2005.

[10] M. R. S. Zhilu Zhang. Generalized cross entropy
loss for training deep neural networks with noisy
labels. arXiv:1805.07836, 2018.

8


