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Abstract

The environment is changing due to anthropogenic carbon emissions, and so is the carbon cy-
cle regulating the exchange of CO2 (i.e. fluxes) between the Earth’s surface and the atmosphere.
Measuring these changes is difficult, as it would require enormously dense observation networks
to capture the strongly heterogeneous underlying flux-landscape. Through a combination of car-
bon exchange (CE) models and data assimilation (DA), the CarbonTracker data assimilation
shell (CTDAS) generates a flux-landscape estimate which optimally matches the available ob-
servations. The current implementation of this DA approach is static; flux-landscape estimates
produced in the past are not used for estimating new flux-landscapes. However, preliminary
research has shown that seasonal, currently unused, patterns are present within the estimates
of the DA approach. We propose three different methods for utilizing these patterns: a simple
monthly mean model, a seasonal autoregressive integrated moving average (SARIMA) model,
and a seasonal autoregressive integrated moving average with exogenous factors (SARIMAX)
model. Preliminary results strongly indicate that the monthly mean model provides a substantial
improvement over the current DA implementation once incorporated within CTDAS. In contrast,
the SARIMA and SARIMAX models struggle to capture the non-stationary seasonal patterns.
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Chapter 1: Introduction
Global warming is causing the glaciers to melt, seawater levels to rise and the weather to become
more extreme, meaning more intense periods of rainfall and longer droughts. This is caused by
the greenhouse effect, where greenhouse gases absorb infrared radiation and radiate it back to the
Earth’s surface. Some of the most prominent greenhouse gasses are carbon dioxide, methane, and
water vapor. Although the increase in the concentrations of these gasses is not always caused by
human activities, a slight change could disturb the current balance. Take for instance water vapor.
On itself, a harmless gas that is omnipresent within the atmosphere. However, the higher the tem-
perature of the atmosphere, the more water vapor it can hold without it falling down in some form
of precipitation. The higher the water vapor concentration, the more infrared radiation is absorbed
by it, resulting in a positive feedback loop where both temperature and water vapor concentration in
the atmosphere keep increasing.
Examples like these show how a small change in the atmosphere can cause a snowball effect
which would be difficult to stop. As such, the scientific community has urged policymakers to
reduce the emissions of greenhouse gasses and eventually transition into a carbon-neutral economy
(Intergovernmental Panel on Climate Change, 2021). The signing of the Paris Agreement (2015) is
an answer to this call, as 195 countries expressed their commitment to a 50% reduction of green-
house gas emissions by 2030 and neutrality by the second half of the century.
However, to determine the effectiveness of policies and track whether the parties that signed the
Paris agreement are on track to reaching their goals, accurate models and validation methods on the
emissions and distribution of greenhouse gasses are needed. The Global Carbon Project (GCP) was
established to "work with the international science community to establish a common and mutually
agreed on knowledge base to support policy debate and action to slow down and ultimately stop the
increase of greenhouse gases in the atmosphere." (Poruschi, Dhakal, & Canadell, 2010). They aim
to achieve this by focusing on the effect of anthropogenic activities on the global biogeochemical
cycles which govern the emission of the three main greenhouse gasses: CO2, CH4 and N2O.

1.1 Global Carbon Budget
One of the better-known biochemical cycles is the carbon cycle. The GCP aims to gain additional
insights into the carbon cycle and share them across the scientific community using the annually
updated Global Carbon Budget (GCB; (Le Quéré et al., 2015; Friedlingstein et al., 2020, 2021)).
As the focus of the GCB is on the effect of human activities on the carbon cycle, their findings are
expressed in the perturbation of the carbon cycle caused by anthropogenic activities as shown in
Figure 1.1. Note how the transfer of carbon between the earth’s surface and the atmosphere can be
categorized into four different carbon sinks and sources: fossil fuel emissions (FFFfossil), forest fire
emissions (FFFfire), biosphere uptake (FFFbio), and ocean uptake (FFFocean). Measuring each of these
components individually on a global scale is infeasible. Instead, carbon exchange (CE) models are
used to estimate how these carbon sinks and sources interact with the atmosphere. The problem
is that the used CE models are not perfect due to parameterizations and assumptions underlying
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Figure 1.1: Schematic representation of the overall perturbation of the global carbon cycle caused
by anthropogenic activities. See the legend for the corresponding arrows and units. Source:
Friedlingstein et al. (2021)

the models. Intrinsic biases result in a budget imbalance (Bim), where the measured atmospheric
concentrations do not match the sum of the CE models. For the remainder of this thesis, Bim is
defined as

Bim =FFFfire+FFFfossil+FFFbio+FFFocean−Gatm, (1)

where Gatm is the measured gain in atmospheric CO2 (for more information, see Appendix A.1).
One of the aims of the GCB is to increase our knowledge of the carbon cycle and thereby minimize
Bim.

One way of minimizing Bim is to scale the surface fluxes through a process called atmospheric
inversion. A system handling such inversions consists of 4 main components:

1. Prior surface fluxes: These are the non-optimized fluxes, generally originating from CE mod-
els.

2. Observation set: This is a set of measured atmospheric concentrations which is used to vali-
date the outcome of the atmospheric inversion.
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3. Transport model: A transport model transports the surface fluxes to the atmospheric concen-
trations such that they can be compared to the observations.

4. Optimization: The optimization step combines all of the other three components by scaling
the prior fluxes such that after transporting the fluxes, they optimally match the observations.

The exact implementation of an atmospheric inversion system depends mainly on the used optimiza-
tion technique. However, an intuitive interpretation of the process is to view it as a way of finding
a set of hyperparameters that, once applied to the CE models, result in a model which optimally
matches the available observations.

One might think that the concept of atmospheric inversion is simply a matter of fitting models
to observation data. Solely trying to find the best fit to observation data could result in an overfitted
model, which is unable to make predictions on regions and/or time points not covered within the
observation set. Connecting conclusions to such an inversion model would therefore be difficult.
While in a sense this is indeed the case, the fitting procedure is in some regions highly constrained
by measurements (Europe, US) and in some regions much less (Tropics, Siberia) (see Figure 1.2).
The regions with a dense measurement network will be mainly informed by observations in a DA
system, whereas regions with fewer measurements, such as the tropics, are mainly informed by
the prior. The resulting reanalysis of multiple decades of surface CO2 fluxes is thus a mixture of
data-driven and prior-driven results. Knowing that these reanalyses are not perfect, and depend on
the transport model used, as well as the prior fluxes and the prescribed error structure, conclusions
about the carbon cycle are generally taken not from a single, but multiple inverse models (Jones et al.,
2021a; Schuh et al., 2019; Gaubert et al., 2019; Friedlingstein et al., 2020, 2021; Hauck et al., 2020;
Petetin et al., 2021). By combining CO2 flux estimations of multiple models, the ensemble becomes
more robust to overfitting and thus a trend/bias in the ensemble is a stronger indication of a potential
bias than a trend/bias in a single model. The usage of such an ensemble, in combination with the
omission of some of the data (specifically aircraft data, being a sensitive indicator of model vertical
transport) while fitting the models and using the latter for validation of the results, adds to the overall
validity of the ensemble. Moreover, the inverse method is the only available view on the GCB that
uses atmospheric observations of CO2 increases to constrain fluxes. This integral constraint posed by
mass-conservation of all exchange, as well as highly accurate long-term measurements, is arguably
the best knowledge available on the forcing of climate by CO2. Hence, atmospheric inversion is a
powerful tool for refining the GCB.

1.2 CarbonTracker Europe
One of these inversion projects is the CarbonTracker Europe (CTE) project, developed by Wagenin-
gen University - Meteorology and Air Quality Department (Peters et al., 2010). Originally forked
from CarbonTracker in 2008 (Peters et al., 2007), CTE has released an annual/biennial version since
2015, where the focus lies on improving the weekly estimates of global CO2 surface fluxes. These
optimized fluxes have been used to refine the GCB since 2015 (Le Quéré et al., 2015). Given the
expertise of Prof. Dr. Wouter Peters and Auke M. van der Woude, who are both actively working on
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Figure 1.2: Location of the CO2 measuring stations with the ObsPack dataset (Cox et al., 2021).
The color indicates the number of measurements taken at each station between 2000 and 2021,
ranging from 1 measurement at the BIR station in Europe to 49051 measurements taken at the SNP
station in the North American temperate region. The combined number of measurements across all
147 measuring stations is 617090. The light-blue area indicates the 11 distinct TransCom regions
defined by (Gurney et al., 2003), which are discussed in more detail in Appendix A.2

CTE, this thesis revolves around improving the functionality of CTE. Before discussing how CTE
could potentially be improved, an explanation of the current system is given.

1.2.1 The ensemble Kalman filter

The algorithm used for minimizing the budget imbalance as defined in Equation 1 within CTE, is
an implementation of the square-root ensemble Kalman filter (Whitaker & Hamill, 2002), further
referred to as the ensemble Kalman filter (EKF). Similar to a regular Kalman filter, the EKF uses
data assimilation (DA) to estimate some hidden state λλλ ∈ Rs, where s ∈ N is the number of ele-
ments within the state vector. The exact definition of λλλ is given in Appendix A.2. However, for
understanding its function within the EKF, it suffices to interpret λλλ as a representation of the hidden
biases within the CE models. As a result, an arbitrary flux landscape FFF ∈R360×180 relates to a state
vector λλλ as

FFF =FFFprior⊙K (λλλ), (2)

where ⊙ is the Hadamard product, FFFprior = FFFbio+FFFocean+FFFfossil+FFFfire ∈ R360×180, and K :
Rs →R360×180 is an operator which maps the elements within λλλ to a 1×1 degree global grid.

In essence, the EKF is a function that updates some background state vector λλλb into an analyzed
state vector λλλa. This λλλa results in surface fluxes FFFa which are optimally consistent with some set
of observations yyy◦ ∈ Rm, where m is the number of observations. Or in other words, a set of fluxes
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that causes the Bim defined in Equation 1 to be minimized. The remainder of this section will only
discuss the three main components of the EKF: the cost function, the optimization strategy, and its
state and covariance forecast model. For an in-depth explanation, see Peters et al. (2005).

Cost function Obtaining a λλλa such that Bim is minimized is done by minimizing a cost function
J(λλλ). This cost function has to capture two separate components: A penalty for the mismatch
between the observations and the model estimates (Jobs(λλλ)) and a penalty for adjustments made to
the original state (Jstate(λλλ)). The need for Jobs speaks for itself; The difference between the model
estimates and observations should be minimized. The need for Jstate is less straightforward. This
term is included to prevent the EKF from finding values for the λλλ which are physically unlikely, and
is, therefore, used as a regularization term of the cost function. By including a term that penalizes
large differences between λλλb and λλλa, the optimized model produced by the EKF is guided towards
the prior model as closely as possible. In turn, this makes it unlikely that the EKF moves too far
away from a model which is considered to be physically plausible.

Within the most recent iteration of CTE, CTE2018, both components have been captured using
the following formulas:

Jobs(λλλ) = (yyy◦−H (λλλ))TRRR−1(yyy◦−H (λλλ)) (3)

Jstate(λλλ) = (λλλ−λλλ
b)TPPP−1(λλλ−λλλ

b), (4)

where RRR ∈ Rm×m and PPP ∈ Rs×s are covariance matrices of yyy◦ and λλλ respectively and H (λλλ) :
Rs →Rm is the transport operator of the state vector, defined as

H (λλλ) = T (FFFprior⊙K (λλλ)) = T (FFF). (5)

T :R360×180 →Rm is the transport model previously mentioned in Section 1.1, which transports m
tracers to atmospheric concentrations. This step is needed to determine the difference between yyy◦

and an arbitrary flux landscape FFF and in extension λλλ. We note that in the current EKF, the transport
model is the most expensive computationally as it requires close to 6 weeks of time on 50 CPUs
to evaluate all λλλ’s. This cost precludes many other minimization methods to be applied since they
require multiple and fast state evaluations of (iterative) state solutions.

Combining Equation 3 and 4 yields the final cost function:

J(λλλ) = Jobs(λλλ)+ Jstate(λλλ) = (yyy◦−H (λλλ))TRRR−1(yyy◦−H (λλλ))+(λλλ−λλλ
b)TPPP−1(λλλ−λλλ

b) (6)

Optimization As explained above, Bim is minimized by minimizing the cost function J defined in
Equation 6. By setting the derivative J′ to 0, a minimum is found. Using calculus, the state vector λλλ

and its covariance PPP for which J′ = 0 can be shown (Tarantola (2005), as cited in Peters et al. (2005))
to be:

λλλ
a
t = λλλ

b
t +KKK(yyy◦t −H (λλλb

t )) (7)

PPPa
t = (III −KKKHHH)PPPb

t (8)
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in which t is the subscript for time, HHH ∈Rm×s is the linearized matrix form of observation operator
H , and KKK ∈Rs×m is the Kalman gain defined as:

KKK = (PPPb
t HHHT )(HHHPPPb

t HHHT +RRR)−1. (9)

State and covariance forecast model One powerful feature of a regular Kalman filter is its ability
to combine observations with a state transition model to create an optimal estimate of some hidden
state. This transition model M represents how the hidden state λλλ, along with its covariance matrix
PPP, changes from t to t +1:

λλλ
b

t+1 = M (λλλa
t ) (10)

PPPb
t+1 =MMMPPPa

t MMMT +QQQ, (11)

where MMM ∈ Rs×s is linearized matrix of M and QQQ ∈ Rs×s represents the noise introduced by an
imperfect transition model.

However, such a transition model does not yet exist. As stated at the start of this section, λλλ

represents the biases within the combined CE models. The issue is that these biases at time t are
independent of the biases at t − 1. Instead, the biases depend on environmental conditions such as
temperature and precipitation within the biosphere. These conditions often vary on a daily basis,
while λλλ is determined on a weekly basis. This makes defining an accurate transition model based
solely on λλλt−1 impossible.

The original implementation of the EKF simply uses the identity matrix as a transition function,
i.e.

M = III (12)

since it is reasonable to assume that the environmental conditions at t −1 do not differ substantially
from the conditions at t. Within CTE2018, this simple model has been replaced by a smoother over
three time steps:

M smoothed(λλλa, t) = (λλλa
t−1 +λλλ

a
t +1)/3 (13)

where t is the subscript for the time in weeks.

1.2.2 Possible improvement of the ensemble Kalman filter

While Equation 13 is an improvement over Equation 12, the transition function remains relatively
uninformed. Only information from the two previous time steps is used. There is however evidence
for a pattern, and thus information, within the set of all previously analyzed state vectors which is
currently not used. One of the most striking examples is the seasonal pattern within the scaling
factor of two eco-regions with some of the biggest carbon fluxes on this planet; the northern taiga
within the North American boreal region and crops within the Eurasia temperate region. Figure 1.3
shows the average scaling factor, along with the standard deviation, of these regions aggregated by
month. The figure clearly shows that the analyzed scaling factor is consistently below 1 during the
winter months of the northern hemisphere, meaning that the combined CE models overestimate the
carbon flux within this area during this period.
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Figure 1.3: Both figures show an example of the mean of an analyzed scaling factor aggregated over
a TransCom region and PFT. The σ is based on the average scaling factor per week, meaning each
month has an N ranging between 85 and 94.

Integrating information such as the example depicted above within λλλb would result in a λλλb which
is closer to the true biases within the CE models. This affects the cost function depicted in Equation
6 in two ways. The most intuitive effect is that fewer adjustments are needed to go from λλλb to
λλλa, reducing Jstate(λλλa). But more importantly, Jobs is reduced as well. A bias within λλλb

t could
be propagated through the solution and affect λλλa at times t + 5, t + 6, or even t + 20. This is a
known issue of the time-stepping approach as CO2 is conserved within the atmosphere. Another
potential negative effect of biases within λλλb, is that the prior covariance PPPb needs to be inflated to
ensure that the analyzed state vector λλλa is within the expected error of PPPb or, alternatively, RRR needs
to be increased to keep yyy◦−H (λλλa) within the expected mole fraction uncertainty. An unbiased λλλb

would therefore result in a λλλa providing a closer resemblance to the observations yyy◦ and thus reduce
Jobs(λλλa).

This forms the theoretical basis for how an improved model for λλλb would improve the function-
ality of the EKF. As a result, more confidence can be put into the modeled fluxes, allowing for more
informed policy-making on curbing the effect of anthropogenic CO2 emissions.

1.2.3 Used data

Each CE model used for determining the budget imbalance Bim defined in equation 1 is determined
using a different model. However, the characteristics of the carbon fluxes estimated by these models
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vary greatly. Fossil fuel emissions are for instance relatively constant with a strong recurring sea-
sonal pattern, while the carbon fluxes within the biosphere are strongly influenced by meteorological
conditions such as droughts (Smith et al., 2020). This influences the role each CE model has within
the atmospheric inversion process.

Biosphere fluxes The prior biosphere fluxes (FFFbio) are taken from the Simple Biosphere model
4 (SiB4; (Haynes et al., 2019)). The estimates on biosphere exchange are based on meteorological
data and therefore, the resulting fluxes vary greatly depending on the meteorological conditions.
Because of this variability, the certainty attached to these fluxes is considerably less compared to
the other CE models. This is the reason why the majority of elements within the state vector are
associated with fluxes from the biosphere model (9805 out of 9835).

Ocean fluxes Ocean fluxes (FFFocean) are taken from Jacobson et al. (2007b), which is based on a
global ocean carbon flux inversion. Instead of using atmospheric measurements, carbon measure-
ments taken from the ocean are used for this inversion. Compared to the biosphere fluxes, the ocean
fluxes are relatively small and constant. As such, the confidence within these fluxes is substantially
higher. However, as more than 70% of the earth’s surface is covered by oceans, ocean carbon fluxes
play a major role in the carbon cycle. Therefore, a few elements within the state vector (30 out of
9835) are used to scale these fluxes.

Forest fire emissions Forest fire emissions (FFFfire) are taken from Global Fire Assimilation Sys-
tem (GFAS). The GFAS fire emissions are based on satellite retrievals of heat and are generated
using Copernicus Atmosphere Monitoring Service Information (CAMS) 2022. The carbon fluxes
from this model are considered to be reliable enough to not require any further optimization. As
such, no elements within the state vector are assigned to scale the fluxes from this model.

Fossil fuel emissions Fossil fuel emissions (FFFfossil) are taken from Gridded Fossil Emissions
Dataset (GridFED; (Jones et al., 2021b)). GridFED includes gridded fossil fuel emission estimates
based on the reported energy consumption statistics of countries. Fossil fuel emissions show a
strong and predictable seasonal pattern, which allows for higher confidence to be put in this model.
Therefore, this model is also not optimized within the atmospheric inversion process and no elements
within the state vector are associated with carbon fluxes originating from this model.

Observations In order to estimate the gain in atmospheric CO2 concentrations (Gatm), a set of real
observations (yyy◦) is used. These observations are taken from the Observation Package (ObsPack;
(Cox et al., 2021)) dataset, which combines measurements processed by 463 laboratories across the
globe. The distribution of these observations is shown in Figure 1.2. Satellite measurements are not
included, as these measurements are associated with higher uncertainty.
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1.3 Background literature
Several examples can be found where atmospheric inversion systems have been optimized. However,
these efforts focused either on setting up a new DA system (Peters et al., 2005, 2007), increasing its
resolution (van der Laan-Luijkx et al., 2017), or improving the data used by the system (Chevallier et
al., 2009). To the author’s knowledge, no literature is available on the subject of finding a transition
model for the inversion system. There is however great interest in combining the field of earth
systems science and machine learning in order to gain new insight into the often chaotic behavior
of earth systems (Reichstein et al., 2019; Reichstein, Camps-Valls, Tuia, & Xiang Zhu, 2021b).
Furthermore, the recently published book by Camps-Valls, Xiang Zhu, Tuia, and Reichstein (2021)
provides plenty of inspiration on how to use ML, with most emphasis being put on DL, for problems
often encountered within earth sciences. The field of atmospheric inversion is unfortunately not that
well represented within that book. This is a shame as, over the past few years, sufficient data has
become available to analyze the behavior of these inversion techniques and potentially correct their
errors. As such, additional literature is provided that focuses on improving atmospheric inversions
using ML.

Bastrikov et al. (2018) compared a genetic algorithm (GA) to a gradient descent approach to find
the optimal parameter setting of seven PFTs. The main evaluation metric was the RMSE reduction
between the prior and the posterior flux estimate. It was found that the GA performed just as well as,
if not better, than the gradient descent approach while having similar computational costs. Therefore,
it might be possible to use a GA for fitting the state vector as well. One downside of this approach
would be the requirement of multiple forward runs of the flux transport, which is one of the most
expensive parts of the atmospheric inversion process. For example, to estimate 20 years of FFFbio

and FFFocean with CTDAS requires 6 weeks of wall-clock time using 48 processors on the national
supercomputer, with the atmospheric transport model TM5 consuming close to 90% of the resources.

Jung et al. (2020) discusses the validation of the FLUXCOM approach, which uses an ensemble
of 9 different ML techniques to scale FLUXNET fluxes using atmospheric inversion-based tech-
niques. The technical details of the machine learning implementation are discussed in another paper
(Tramontana et al., 2016). What is discussed in this paper is how models using different approaches
can be compared to each other, in a sense creating an objective benchmark for novel approaches.
Several metrics are used for this comparison, including the inter-annual variability of the net ecosys-
tem exchange (NEE), seasonal variation of the NEE, and spatial distribution of the mean annual
gross primary production (GPP). Each of these metrics could be used alongside the more commonly
used validation methods of masking a set of observations and comparing the fit of the estimated
fluxes to aircraft measurements.

Another paper by Bonavita and Laloyaux (2020) used an artificial neural network (ANN) to infer
and correct model error of numerical weather prediction (NWP) and climate prediction conducted
with general circulation models. They state that one of the assumptions made by the Kalman filter
and variations of the Kalman filter (i.e. the EKF), is that the model error is equal to 0. This effectively
makes any Kalman filter-based approach blind to the presence of systematic model errors (Dee
(2005), as cited in Bonavita and Laloyaux (2020)). Such systematic model errors are often referred
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to as biases and can vary in space, time, and prevalent meteorological conditions. Correcting these
biases is therefore important for the EKF to function optimally. One of the main evaluation criteria
of the new transition function should therefore be its ability to reduce the prior model bias. A
similar line of reasoning has been applied by Crespi, Petitta, Marson, Viel, and Grigis (2021), who
adjusted monthly quantities from the seasonal forecasting system SEAS5 of the European Centre
for Medium-Range Weather Forecasts (ECMWF). Furthermore, (Tramontana et al., 2016) used the
model bias as one of their evaluation metrics as well.

Other applications of ML in earth sciences worth mentioning are the correction of O3 forecasts
using a gradient boosting machine based on a random decision forest (Petetin et al., 2021), the
usage ANNs to estimate turbulent flows within large-eddy simulations (Stoffer et al., 2021) or par-
titioning FLUXNET fluxes into respiration and photosynthesis fluxes (Tramontana et al., 2020), or
how differential equations bound by physical constraints can be solved using deep learning (Raissi,
Perdikaris, & Karniadakis, 2017).

1.4 Thesis structure and goals
As mentioned within Section 1.2.2, this thesis revolves around improving the transition model of the
EKF currently used within the CTE project. A clear seasonal trend provides the first evidence that
this transition model can be improved by better utilizing previously analyzed state vectors. Further
improvements could be achieved by including auxiliary meteorological information with ML to
fully utilize the dependencies that exist between meteorological conditions and biases within the
biosphere model. However, two hurdles need to be addressed before a ML implementation can be
designed. The first one is the lack of a reliable evaluation metric for the proposed transition models.
This problem is the main focal point within the first part of the thesis. The second problem is how to
structure the data such that any correlations within the state vector and auxiliary meteorological data
can easily be extracted by a ML implementation. Each of these hurdles is discussed in a separate
part, along with a set of research questions.

Setting the baseline The first part of this thesis revolves around setting a baseline. Before such a
baseline can be set, it needs to be clear how each model will be evaluated. It is unfeasible to perform
a full inversion run for every model evaluation, and thus a less complex performance measure is
needed. One approach would be to train the model on a set of previously analyzed state vectors and
try to make a forecast model of this time series. However, the relation between the state vector and
resulting atmospheric carbon concentrations after transporting the state vector is highly non-linear.
A small change in the state vector could drastically affect the resulting flux landscape and in turn
the estimated atmospheric concentrations. It is therefore uncertain whether evaluating a forecast
model on its ability to forecast a state vector would provide a representative measure of its ability to
minimize the bias within the prior fluxes. Therefore, the first question this thesis aims to answer is:

«In which evaluation space is the performance of the transition model most likely to generalize
to the performance within a full inversion run?»
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Finding an answer to this question requires several transition models which can be compared to
each other. Before moving on to more complicated models, some baseline models are needed. This
provides an opportunity to test the effect of utilizing the seasonal patterns within the state vector
shown in Figure 1.3. This can be achieved rather easily by using a monthly average of the analyzed
state vector as a background state vector. This results in a sub-question:

«Would using the seasonal pattern found within the analyzed state vector (see Figure 1.3) result
in a transition function producing a background state vector closer to the true state vector?»

Comparing ML models Once a baseline has been created, it is possible to compare more com-
plex models to this baseline. Instead of immediately delving into large and powerful deep-learning
methods, Part II focuses on a stochastic time-series modeling approach. Various arguments are given
in Part II as to why this stochastic modeling approach suffices as a starting point, but the main argu-
ment is to see whether the usage dependencies on various time scales could provide an improvement
over the simpler transition models introduced in Part I. More precisely, Part II aims to answer the
question:

«Does the utilization of additional temporal dependencies (i.e. dependencies between time-
steps) within the state vector result in a reduction of the mean bias of the prior biosphere and ocean
flux with respect to the monthly average model?»

The transitional transition model only used previous states to estimate the next state. There is
however evidence that the biosphere, and thus also the biases within the biosphere, are affected by
meteorological conditions such as droughts (Smith et al., 2020; van der Laan-Luijkx et al., 2015).
Instead of using the temporal dependencies, it might be more effective to directly use the environ-
mental conditions as predictor variables. These environmental conditions are shown to affect the
biosphere model (Smith et al., 2020; van der Laan-Luijkx et al., 2015), and are therefore likely to
affect the biases within the biosphere model as well. Therefore, the second question investigated in
Part II is:

«Could the utilization of predictor variables (i.e. temperature, precipitation), in combination
with the temporal dependencies, result in a reduction in the mean bias of the prior biosphere and
ocean flux with respect to the monthly average model?»

Before these two questions can be answered, the data needs to be pre-processed. One of the
main problems is the noise within the analyzed state vectors. As such, Part II also discusses the
aggregation methods used to minimize the noise within the analyzed state vector, while also reducing
its dimensionality. Additionally, the environmental variables are processed according to findings
derived from a literature study.
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Additional information As the target audience of this thesis consists of both atmospheric science
and machine learning researchers, some jargon might not be as familiar to some as it is to others.
Therefore, this thesis has a glossary explaining most of the used jargon, as well as all acronyms and
mathematical objects. Finally, all code used for this project can be found at the GitHub repository
of this project. Furthermore, slides from my colloquium might provide a different approach to
explaining the used atmospheric inversion system. Next to being uploaded to the GitHub repository,
the slides can also be downloaded through this link.
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Part I

Setting the Baseline
As stated in Section 1.4, this thesis revolves around improving the transition model M currently
used within the CTE project. This project uses the CarbonTracker data assimilation shell (CTDAS)
as the implementation of the inversion process. Section 1.2.1 discussed some of the shortcomings
and showed an indication of how the current implementation could be improved. This part of the
thesis focuses on building a simple alternative to the current approach and its evaluation. By doing
so, a baseline is constructed to which the more complex alternatives discussed in Part II can be
compared.

This part starts with defining the used transition models in Section 2, followed by the experimen-
tal setup in Section 3. Section 4 discusses the results of the used transition models. However, while
analyzing the results, several problems became apparent. Therefore the iterative process which has
led to the final evaluation method is depicted in this section as well. The final section discusses the
conclusions which can be drawn from the results and sets the baseline evaluation methods used for
Part II.
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Chapter 2: Methods
Before delving into the more complex machine learning methods for creating transition models,
simpler methods are needed for constructing a baseline. The chosen set of simple models consists
of the prior, smoothed, monthly, and analyzed models. These models are a set of state vectors
generated using different methods. Each method is discussed below.

Prior The prior model is the result of not scaling any of the prior fluxes FFFprior. In other words,
the transition function M prior (see Equation 10) is as simple as

M prior = 111, (14)

where 111 ∈N9835 is a vector of ones. Therefore, the prior model provides a ‘worst case’ comparison,
as any effective scaling of the fluxes should improve the resulting flux landscape.

Smoothed The smoothed model (M smoothed) is the transition model currently used within the
contribution of CTE to the GCP 2020 (Friedlingstein et al., 2020) and has been defined in Equation
13. It essentially smooths the analyzed state vector of the previous two time steps to produce the
new background state vector.

Monthly To test the effect using the longer temporal patterns within the state vector shown in
Figure 1.3, the monthly model M monthly uses the monthly average of the analyzed state vector as
the background state vector. To provide a baseline for the evaluation of more complex models, the
implementation of this model has been kept relatively simple. Instead of a dynamic model, M monthly

is a static model which uses the first 19 years of analyzed state vectors (ΛΛΛtrain = [λλλa
0,λλλ

a
1, ...,λλλ

a
t0] ∈

R992×9835, where t0 is the last week of 2018) for determining the average per month. The final
two years (ΛΛΛtest = [λλλa

t0,λλλ
a
t0+1, ...,λλλ

a
t1] ∈ R

104×9835, where t1 is the last week of 2020) are used for
validation. This results in a model

M monthly(t) =
1

|ΛΛΛtrain
m |

· ∑
λλλa∈ΛΛΛtrain

m

λλλ
a

∣∣∣∣∣∣
month(t)=m

, (15)

where t is the time in weeks, m ∈ [Jan,Feb, ...,Dec] is one of the 12 months and ΛΛΛtrain
m is the

set of all λλλa
t ∈ ΛΛΛtrain where month(t) = m. |ΛΛΛtrain

m | is the number of elements within ΛΛΛtrain
m . This

function might look intimidating, but all it does is group the ΛΛΛtrain by month and determines the
average afterward. Do note that this implementation limits the possibility of validating the model as
only the state vectors from the final two years can be used for an independent evaluation.
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Analyzed The analyzed model M analyzed simply returns the optimized state vector of the next
time step:

M analyzed(λλλa
t ) = λλλ

a
t+1 (16)

Note that this is only possible after having done a full inversion run. For this specific model, the
M smoothed transition was used to correct biases within the Simple Biosphere model 4 (SiB4) bio-
sphere model.

This full inversion run serves as the target data under testing conditions in which the fluxes cannot
be transported to atmospheric concentrations. Intuitively, a model trained on previously analyzed
state vectors should perform worse than M analyzed as those models are not fitted to observations
while M analyzed is.
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Chapter 3: Experimental Setup
The used data consists of two separate datasets: 21 years of weekly λλλa (ΛΛΛa) and 2 years of observa-
tions (yyy◦).

Weekly analyzed state vectors The set ΛΛΛa consists of 1096 λλλas from the period 2000 to 2020 and
was generated by a full inversion run of the CTE contribution to the GCP 2020 (Friedlingstein et al.,
2020). This set has been divided into a training set (ΛΛΛtrain) and a testing set (ΛΛΛtest) by putting the
final two years aside, resulting in the sets ΛΛΛtrain ∈R992×9835 and ΛΛΛtest ∈R104×9835 respectively.

Observations The set of observations yyy◦ is a collection of 608659 measurements taken in 2019
and 2020 across the set of measuring stations M, where |M| = 146 (Cox et al., 2021). The distri-
bution of the measuring stations and observations is shown in Figure 1.2. These observations were
generated using various measuring techniques, flask and in situ, and altitudes, ranging from surface
measurements to aircraft measurements taken at 1.3∗104m. Note that as the prior state vector pre-
diction step occurs before the EKF optimization step, the prior state vector can also be evaluated
based on its fit to observations later used by the EKF.
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Chapter 4: Results
While constructing the baseline to which all newly implemented methods could be compared, sev-
eral issues arose regarding the generalisability of the results. Since the different models can be com-
pared to each other at different points within the inversion pipeline, the main question that needs to
be answered is whether a good model fit at an early stage (i.e. modeled state vector vs. optimized
state vector) generalizes to an improved inversion. Performing a complete inversion run for every
proposed model is infeasible due to the costs of running this model (close to 6 weeks of time on 50
CPUs to evaluate all λλλ’s.) Therefore it would be ideal if the model could be evaluated earlier within
the pipeline, minimizing the computational costs.

Ideally, the model can be evaluated at the lowest level possible: modeled state vector versus op-
timized state vector. However, this would require the assumption that approximating the optimized
state vector will result in a prior flux closely resembling the ‘true’ flux. This assumption cannot
be made without providing additional evidence. Hence, intermediate steps are included such that
any findings from the modeled state vector versus observations comparison can be tracked along the
inversion pipeline. If the same qualitative properties of the comparison hold across the various steps,
more confidence can be put in an evaluation procedure at those steps. A flowchart of the decision
process and the chosen intermediate steps is shown in Figure 4.1.

Are conclusions model vs. optimized flux
landscape congruent with conclusions

model vs. observations?

Are conclusions model vs. optimized state
vector congruent with conclusions model vs.

observations?

Evaluation based on
observations

Evaluation based on
flux landscape

Evaluation based on
optimized state vector

Yes Yes

No No

Are conclusions  vs. 

 congruent with

conclusions   vs. ?

Are conclusions  vs.  congruent with 

conclusions   vs. ?

Evaluation based on Evaluation based on 

Evaluation based on 

Figure 4.1: Flowchart of the decision process resulting in the final evaluation. By analyzing the
results at intermediate steps, the point within the inversion pipeline can be determined at which
optimization would result in an improved prior model. By verifying at each step if the conclusions
from the comparison between T (FFFprior⊙K (λλλ)) and yyy◦ still hold, a cutoff point can be determined
at which findings from the model no longer generalize to an improved flux model. If the conclusions
from T (FFFprior⊙K (λλλ)) versus yyy◦ also hold for λλλ versus λλλa, it is reasonable to evaluate intermediate
models based on how well they fit λλλa.
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Figure 4.2: Boxplots showing the distribution of root-mean-square-error and mean error of individ-
ual measuring stations over the period 2019-2020.

4.1 Model versus observations
The first step is to evaluate the models discussed in Section 2 based on how well the transported
state vector T (FFFprior⊙K (λλλ)) matches the observations yyy◦. This evaluation is based on how well
the model is able to capture the concentrations observed at each site shown in Figure 1.2. Both
the root-mean-square error (RMSE) and the mean error (ME) were determined at these sites. The
RMSE serves as a measure of the variance of the error, while the ME represents the average bias at
each measuring station. Ideally, both the RMSE and the ME are similar to each other and close to 0
as this would imply the model can consistently make accurate predictions about the measured CO2
concentrations. The results are shown in Figure 4.2.

Figure 4.2 shows that the prior model performs the worst with the mean of the ME being
2.65 [ppm] and the mean RMSE being 4.27 [ppm]. The smoothed model provides a considerable
improvement with a mean ME and RMSE of 1.27 [ppm] and 3.40 [ppm] respectively. The final two
models, monthly and optimized, show similar results. Their mean ME values are 0.41 and 0.34,
whereas their mean RMSE values are 2.86 and 3.13 respectively. This ranking is considered to be
the main qualitative property of the modeled state vector versus observations comparison and will
serve as a reference for the remaining comparisons.
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4.2 Model versus optimized flux landscape
As the transportation of the state vector is costly, there would be a preference for skipping this step
during intermediate evaluations. The earliest point within the inversion pipeline would be at the
point of the analyzed flux landscape FFFa = FFFprior⊙K (λλλa)(see Equation 2). One potential problem
is that this comparison is based on λλλa. This λλλa is a product of the EKF and can therefore contain
biases. Furthermore, some areas of the resulting flux landscape are noisy due to those areas being
poorly constrained by observations. As a result, it is possible that the results from the comparison
between FFFprior⊙K (λλλ) and FFFprior⊙K (λλλa) do not match the qualitative results found in Section
4.1.

If the comparison between models in flux space shows the same qualitative results depicted
in Figure 4.2 (i.e. monthly is better than smoothed, which is better than prior, which closely
resembles optimized), it would entail that it is reasonable to evaluate intermediate models in flux
space instead of directly comparing them to observations. Figure 4.3 shows that this is indeed the
case. Note that FFFmonthly is consistently closest to FFFanalysed, with the mean difference of only −0.07
[PgC ·yr−1]. The differences between FFFsmoothed and FFFprior, and FFFanalysed are considerably higher
with the mean differences being 1.14 [PgC ·yr−1] and 3.11 [PgC ·yr−1] respectively. As such, the
qualitative results of the analysis in observation space are also present in the analysis in flux space.
Another interesting feature to note is the seasonal pattern of a large difference between the models
in the winter/spring weeks (i.e. weeks 0-20, 45 to 70, and 95-104) and a small difference within the
summer/fall weeks (i.e. weeks 20-45 and 70-95).

4.3 Model versus optimized state vector
While evaluating within flux space is less complex compared to evaluating within observation space,
the models discussed within Section 2 produce a set of state vectors. If it is possible to compare
two sets of state vectors and get similar qualitative results as the evaluation within the observation
space, intermediate evaluations would be even simpler. However, to be able to do so requires the
assumption that findings from the state space generalize to flux space and eventually observation
space. The previous section showed that the latter step, from flux space to observation space holds
relatively well, as the ranking of the models in flux space was identical to the ranking in observation
space. However, going from state space to flux space brings new challenges.

A challenge that arises is the difference in the size of the fluxes associated with the elements
within the state vector. Some elements within the state vector apply to small regions with a small
flux such as a single 1× 1 degree grid cell of a desert at the Iberian Peninsula or apply to regions
with a large flux, such as all tropical trees within the South American tropical TransCom region. To
get a feel of the scale at which the values might differ, Figure 4.4 shows the distribution of the total
ecosystem respiration (TER) associated with each element within the state vector. Here, the TER is
used as a proxy for the scale of the total fluxes one could expect within a region over an entire year.
The figure shows that for the majority of the elements within the state vector, the TER is close to 1
[mmol ·m−2·s−1], while for some the TER is as high as 3.587 · 103 [mmol ·m−2·s−1]. As a result,
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Figure 4.3: Time series of the weekly global difference between optimized inversion model
FFFanalysed and prior models FFFprior, FFFmonthly and FFFsmoothed between 2019 and 2020. Results were
obtained by subtracting FFFanalysed from the models FFFprior, FFFmonthly and FFFsmoothed and taking the
global sum of fluxes for each week. The dotted line serves as the target given the aim of approxi-
mating FFFanalysed.

a small error on an element within the state vector associated with a large TER could have a large
effect on flux space. And vice versa, a large error on an element with a small TER would have a
minimal effect in flux space.

The comparison between the different models in state vector space is shown in Figure 4.5. What
it shows, is a similar pattern to the one observed in Figure 4.3, where λλλprior consistently has the
highest difference, with a mean difference of 0.141, followed by λλλsmoothed and λλλmonthly with mean
differences of 0.046 and −0.036 respectively. Also, the seasonal pattern of a large difference within
the winter/spring weeks and a small difference within the summer/fall weeks is visible.

There is however one key difference between the analysis in observation space and the one in
state vector space. This is best explained by table 4.1, where the averages from Figures 4.2, 4.3 and
4.5 have been summarized. Within flux space, the same substantial difference between the smoothed
and prior model found in observation space is present, as well as the difference between smoothed
and monthly. However, this improvement from smoothed to monthly is not visible in state vector
space as the absolute mean differences are almost equal, being 0.046 and 0.036 respectively. This is
a clear example where qualitative properties of the model present in the observation space, are not
represented similarly in the state vector space. As such, any optimization effort executed in state
vector space is not guaranteed to propagate to flux and observation space.
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Figure 4.4: Distribution of the TER values associated with the elements of the state vector. Within
this distribution, elements representing 1× 1 degree grid cells are indicated in blue, whereas ele-
ments representing entire ecoregions are indicated in red. Notice how the elements associated with
entire ecoregions scale fluxes ranging from 0.1 to 3000 [mmol ·m−2·s−1] while the elements associ-
ated with gridded cells scale fluxes ranging from 0.0001 to 10 [mmol ·m−2·s−1]
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Figure 4.5: Time series of the mean difference between the elements within prior state vectors λλλprior,
λλλmonthly and λλλsmoothed, and optimized state vector λλλoptimized. Results were obtained by subtracting
λλλoptimized from the models λλλprior, λλλmonthly and λλλsmoothed and taking the average of the resulting
vector. The dotted line serves as the target given the aim of approximating λλλoptimized.
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Observation space Flux space state vector space
mean(H (λλλmodel)−yyy◦) mean(FFFmodel−FFFanalyzed) mean(λλλmodel−λλλanalyzed)

Model N = 146, [ppm] N = 104, [PgC ·yr−1] N = 104, [−]
prior 2.65 3.11 0.141

smoothed 1.28 1.14 0.046
monthly 0.42 −0.07 −0.036
optimized 0.35 0.00 0.000

Table 4.1: Summary of the mean differences between the models in observation, flux, and state
vector space and their respective target variable.
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Chapter 5: Discussion and Recommendations
Within this research, the monthly model is proposed as an alternative to the transition model cur-
rently used within CTDAS. Figure 4.2 shows that the monthly model substantially reduces the mean
error between the transported state vector and the observations, compared to the smoothed model.
Furthermore, the root-mean-square error between the transported state vector and observations is
reduced as well, although this reduction is less prominently visible.

By evaluating the model at different steps within the inversion pipeline, it has been shown that
the step at which the model is evaluated influences the conclusions that can be drawn from the
evaluation. Therefore, it is important to carefully think about which step is best suited for evaluation
purposes. The two conflicting goals are; matching the observations as closely as possible while
maintaining a sufficiently simple evaluation process. This trade-off has resulted in the decision
process depicted in Figure 5.1.

Note that the used reasoning only indicates that the qualitative qualities of the results in the
observations space are also present in the results of the flux space. As only four models were eval-
uated, no hard conclusions can be drawn from their comparison. To be able to do so, would require
a deeper analysis of the dependencies between the various evaluation spaces. This is, especially for
the dependencies between the observation and flux space, a complex task. The transport model HHH
used for going from flux to observation space is highly non-linear and the available observations
vary greatly in their frequency, accuracy, and spatial distribution.

5.1 Discussion on the evaluation
One step that could be taken to improve the comparison between the different evaluation spaces, is
the inclusion of a variance measure of the error. This has not been included in the current analysis
of the flux space as not all 1x1 degree grid cells which define the flux space contribute equally to the
total error between the model and FFFanalysed. Cells near the equator cover a larger surface area and
are therefore more likely to be associated with a larger flux, compared to cells near the poles. If all
cells were to have equal weight in the determination of the variance, the error or the cells near the
poles would artificially reduce the variance, while cells near the equator would increase the variance.
Therefore, some normalization would be needed to provide an unbiased variance measure.

For the final evaluation of the model, additional performance measures more often used within
the evaluation of inversion methods should be included (Jung et al., 2020; Tramontana et al., 2016).
These include the inter-annual variability of the net ecosystem exchange (NEE), seasonal variation
of the NEE, and spatial distribution of the mean annual gross primary production (GPP). To maintain
an unbiased judgment, these evaluation methods are reserved for only the final evaluation.

5.2 Discussion of the methods
In future iterations of the project, the monthly model can be made a dynamic model with just only
a few minor adjustments. Instead of using the first 19 years of state vectors for determining the
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average for the final two years, a running average can be used, which is updated after a new state
vector has been analyzed.

Besides improving the analysis by including the variance, adding additional models would add
to the validity of the comparison as well. One simple, but possibly effective model, would be a
combination of the smoothed and monthly model. This model would be more resilient to abnormal
weather patterns as shorter temporal dependencies are included in the determination of the back-
ground state vector. It is reasonable to assume that if there was a heatwave that affected the state
vector at t, the same heatwave could affect the state vector at t +1 in a similar fashion. This effect
is currently not captured within the monthly model. Even though the monthly model is performing
well as it is, including these shorter temporal dependencies might bring it the resulting background
state vector even closer to the observations after transportation to atmospheric concentrations.

A final model worth investigating is another variant of the monthly model in which the weight
of the analyzed state vectors used for determining the average is varied according to the recency of
the analyzed state vector. Due to anthropogenic greenhouse gas emissions, the climate is rapidly
changing. This is likely to affect the biases within the biosphere and ocean carbon flux models
and in extension the analyzed state vector. By applying a decaying term to earlier analyzed state
vectors, the average is less affected by state vectors that were fitted to an environment that is no
longer representative of the current environment. Furthermore, the quantity of atmospheric CO2
measurements increases over time (see supplementary Figure B.1). Especially with the new CO2M
satellite data becoming available (Sierk, Bézy, Löscher, & Meijer, 2019), this trend is likely to
continue. More observations result in a more constrained and hence more accurate analyzed state
vector, providing another argument on why later analyzed state vectors should receive a higher
weight when determining the monthly average.

As the main purpose of this part of the thesis is to construct a baseline evaluation method, the im-
provements proposed above have not been implemented. However, as the monthly model provides
a substantial improvement over the currently used smoothed model, future research could focus on
improving the monthly model discussed in this section while considering the suggestions made.
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Figure 5.1: Filled in diagram of the decision process depicted in Figure 4.1. As the results of the
evaluations of model vs. optimized flux landscape and model vs. observations are sufficiently similar,
evaluation in observation space is not needed. The results of the comparisons of model vs. optimized
state vector and model vs. observations did however differ on the ranking of the models. Hence,
evaluation in state vector space is not a viable option. This leads to the conclusion of evaluating
intermediate models in flux space.
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Chapter 6: Conclusion
Based on the findings presented above, the research questions set out in Section 1.4 can be answered.

«Would using the seasonal pattern found within the analyzed state vector (see Figure 1.3) result
in a transition function producing a background state vector closer to the true state vector?»

The comparison between the smoothed and monthly model in Figure 4.2 shows a substantial re-
duction in mean error. As the monthly model was explicitly designed to include the seasonal pattern
referenced in the question as an alternative to the smoothed model which does not use this seasonal
pattern, it can indeed be concluded that the usage of the seasonal pattern improved the ability of the
transition model to match the true state vector.

«In which evaluation space is the performance of the transition model most likely to generalize
to the performance within a full inversion run?»

The evaluation of various models in different evaluation spaces has shown that it is possible to
evaluate the state vectors produced by transition models in flux space. The qualitative results from
the evaluation in observation space match the qualitative results from the evaluation in flux space,
while the evaluation in state vector space showed different qualitative results. As a result, an evalu-
ation in state vector space is unlikely to generalize to observation space. Due to the limited number
of models included in the analysis, a hard conclusion on the generalisability of the results in obser-
vation space to flux space cannot be made. However, these hard conclusions are not needed. The
main purpose of the evaluation is to find an indication of the effectiveness of evaluating state vector
models in an evaluation space less complex than the observation space. As the same qualitative
properties are present in both the observation and flux space, there is sufficient evidence to support
the evaluation of intermediate models in flux space.
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Part II

Comparing ML Models
The monthly mean method presented in Part I already provides an improvement over the current
CTE2018 implementation. However, it is still not known how much training data is needed for
the monthly model to perform optimally. Furthermore, the monthly mean method is relatively ill-
informed. Including additional predictor variables in combination with ML could improve the fore-
cast function even further. This part of the thesis focuses on stochastic time-series models, which
can utilize linear relationships between the predictor variable and target variable.

When building these forecast models, it is important to keep in mind the purpose of the model:

1. The goal is to develop a state transition model for the state vector, as defined in Equation 10.
Hence, the output of the model should be easily translated into a state vector.

2. For an effective integration within CTDAS, the model should reach a reasonable performance
using a limited amount of training data. If too much training data is needed, the transition
model can only be applied during the final few years of the inversion run, limiting its usability.

3. Part I has shown that evaluation in state vector space could result in sub-optimal model se-
lection. Therefore, the final model evaluation should be done in flux space, or, if time and
resources allow it, observation space.

4. The original set of state vectors contains a substantial amount of noise. Some pre-processing
of the data is needed to limit this noise, making it easier to extract relations between the
predictor and the target variable.

While keeping the points listed above in mind, the following questions are investigated in the
remainder of this part of the thesis:

«Does the utilization of additional temporal dependencies (i.e. dependencies between time-
steps) result in a reduction of the mean bias of the prior biosphere and ocean flux with respect to the
monthly average model?»

The current monthly model is a simple model which determines 12 independent parameters for
every element in the state vector; one average scaling factor for every month of the year. This
implementation is sub-optimal, as it is not able to capture weekly and yearly variability.

Heat anomalies are among the main factors driving anomalies in NEE (Rödenbeck, Zaehle,
Keeling, & Heimann, 2018). A plausible explanation is the response of vegetation to extreme heat.
When plants experience heat-induced stress, photosynthesis is limited to conserve water (Peters et
al., 2018). The exact moment when plants enter this water-conserving mode is difficult to model. As
such, heat anomalies are likely to be correlated to biases within the biosphere model. Considering
that extreme temperature anomalies often last for several weeks (i.e. droughts), it is reasonable
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to assume weekly temporal dependencies exist within the biases of the biosphere model. Longer
temporal dependencies are also likely to exist, considering that the effects of severe droughts can
last for multiple years (Yu et al., 2022; Kannenberg, Schwalm, & Anderegg, 2020). Perhaps even
more interesting, is the finding that the used SiB4 model consistently under- or overestimates the
NEE of some PFTs in a yearly recurring pattern (based on personal correspondence with dr. LMJ
Kooijmans-de Vries). Hence, both weekly and yearly variability within the scaling factors could
provide valuable information for a scaling factor forecast model.

Instead of trying to capture the temporal dependencies within the scaling factor based solely on
previous scaling factors, it might be easier to use the environmental conditions causing these tem-
poral dependencies by using the environmental conditions as predictor variables. Next to heat, other
environmental conditions such as precipitation and solar radiation intensity could influence the heat
stress experienced by plants as well. This line of reasoning results in the second and final question
this part of the thesis aims to answer:

«Could the utilization of predictor variables (i.e. temperature, precipitation), in combination
with the temporal dependencies, result in a reduction in the mean bias of the prior biosphere and
ocean flux with respect to the monthly average model?»

Before the proposed questions can be answered, the process used to denoise the data is discussed.
Afterward, the models used to answer the questions are explained, followed by the experimental
setup. The four points listed at the start of this introduction provide a central theme during these
sections. This part continues with the results of the conducted experiments and a discussion of
these results. The final section draws conclusions from the results and aims to answer the questions
proposed in this introduction.
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Chapter 7: Methods
7.1 Data pre-processing
The first step in the analysis is defining, and gaining insights from, the target data. The goal of the
transition model is to find a λλλb

t which resembles λλλa
t as closely as possible. Hence, the target variable

is as simple as λλλa. Basic intuition tells us that the scaling factors within λλλa should not be negative, as
that would also reverse the diurnal cycle present within the biosphere, and should neither be much
greater than 3, as that would imply a severe underestimation of the flux from the original CE models.
Any value outside of this range is more likely to be noise from the EKF instead of being the result of
a real bias within FFFbio and FFFocean. However, Figure 7.1 shows that a substantial amount of scaling
factors within λλλa are outside of this range. Hence, some noise reduction is needed before λλλa can be
used as a target variable.

The noisiest data points are located in the part of λλλ which represents the North-American tem-
perate, North-American boreal, Eurasia temperate, Eurasia boreal and Europe TransCom regions
as shown in figure 7.2. Each element within this part of λλλ represents a single 1×1 degree grid point
and these individual grid points are not very well constrained by observations. Hence, individual
grid points can be scaled up or down to unrealistic values. However, these gridded regions are also
the regions where most of the observations are taken from (see figure 1.2). Therefore, the overall
corrections made within these regions are most likely to be a result of an actual bias within the flux
model. It is therefore likely that the corrections made on a higher scale are informative. A noise re-
duction method is needed which is able to capture the information present within these lower spatial
resolution corrections.

7.1.1 The effective scaling factor

Unfortunately, it is not possible to simply take an average of all the scaling factors within an ecore-
gion. The problem is that the fluxes associated with each element vary. Therefore a weighted average
is needed based on the prior flux. The most intuitive way of doing so is by determining the effective
scaling factor for each ecoregion. This is achieved by dividing the sum of all optimized fluxes within
an ecoregion by the sum of all prior fluxes. See Figure C.3 for a diagram explaining the procedure
in more detail. The new effective scaling factor vector l is defined as follows:

lr =
∑e∈Er λe ·K −1(FFFprior)e

∑e∈Er K −1(FFFprior)e
, (17)

where r is one of the gridded ecoregions (See Table D.4 for a comprehensive list), Er is the set
of all elements within the state vector which lie within ecoregion r, and K −1 :R360×180 →R9835 is
the inverse of K which maps a matrix of fluxes to elements within the state vector.

One issue inherent to the nature of the operation is the tendency for effective scaling factors
associated with prior fluxes close to 0 to become unstable. The found values ranged from −6000
to +4000. As the prior flux associated with these scaling factors are close to 0 (see Figure 7.4), the
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Figure 7.1: A histogram of all scaling factors within the set of all analyzed state-vectors (ΛΛΛa ∈
R9835×1096). Values between 0 and 3 are considered to be plausible indicators of a true bias and are
shown in blue. Values outside of this range are considered to be implausible and are likely to contain
some noise. These values are indicated in red. In total, 56.6% of all scaling factors fall within the
range of plausible values
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Figure 7.2: The distribution of the scaling factors associated with the gridded part of the state-vector
(i.e. TransCom regions North American Boreal, North American Temperate, Eurasia Boreal, Eurasia
Temperate, and Europe) compared to the distribution scaling factors associated with the non-gridded
part of the state-vector elements (i.e. TransCom regions South American Tropical, South American
Temperate, Northern Africa, Southern Africa, Tropical Asia, Australia, and the Oceans). Of the
scaling factors associated with the gridded section of the state vector, 56.2% fall within the range of
plausible values, compared to 93.2% of the scaling factors associated with the non-gridded part of
the state vector.
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Figure 7.3: The distribution of the scaling factors from the gridded section of the state-vector com-
pared to the effective scaling factor capped at ±4σ. Using the effective scaling factors increased the
percentage of realistic scaling factors from 56.2% to 62.4%.

effect these scaling factors have on the eventual fit to the ‘true’ flux landscape is limited. Hence,
this instability in the scaling factors is not of immediate concern. In the current implementation, the
greater outliers are controlled for by capping the scaling factors at the somewhat arbitrary boundary
of mean(lll)±4σ. This cap had a very limited effect on the resulting distribution of effective scaling
factors, which is shown in figure 7.3. Only the small peaks at ∼−19 and ∼ 21 result from this cutoff
point at 4σ. It might, however, be interesting to see how this instability affects the ability of ML
methods to capture the trend within the aggregated scaling factors. This idea is explored further in
Section 10.

7.1.2 Resulting distribution

While some improvement is achieved, a substantial part (37.6%) of the effective scaling factors
remain ‘implausible’. Additional data analysis shown in Figure 7.5 shows that the effect of using
the effective scaling factors is stronger in some TransCom regions than in other TransCom regions.
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Figure 7.4: Correlation between the prior flux and the effective scaling factor. The color gives an in-
dication of the density of the distribution and is generated using Gaussian kernel density estimation.
The figure shows how most of the scaling factors outside of the range of [0, 3] are centered around
a prior flux of 0
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More concretely, Table D.3 shows that there is a decrease in the proportion of plausible scaling
factors in the Eurasia Temperate TransCom region, while the proportion of effective scaling factors
increases substantially in the Europe TransCom region. This difference in the proportion of realistic
scaling factors could partially be explained by the constraints put on the scaling factor within each
region by observations. As Figure 1.2 shows, the Europe TransCom region is highly constrained,
while the Eurasia Temperate TransCom region is not.

Even though North America is well constrained as well, Figure 7.5 and Table D.3 show that
the ratio of plausible effective scaling factors is only marginally higher than the ratio of plausible
unmodified scaling factors. The reason for this large difference is uncertain, but it could be due to a
different surface area distribution of the ecoregions. As explained before, the effective scaling factor
can ‘explode’ if prior flux within the ecoregion is close to 0. Smaller ecoregions will have smaller
fluxes and might therefore be more prone to have an unstable effective scaling factor.

7.1.3 Data used for the remainder of the thesis

Now, any ML implementation is only as good as the data upon which it is trained. As the quality
of the target data seems to vary across TransCom regions, it might very well be possible that the
ability of a forecast model to capture the trend within the effective scaling factors varies as well.
Therefore, the remainder of the thesis focuses on the TransCom regions in which we have the most
confidence in the scaling factors. These are the North American Boreal, North American Temperate,
Eurasia Boreal, Eurasia Temperate and Europe TransCom regions. This means that all scaling
factors associated with the ocean fluxes are excluded from the forecast model. Furthermore, each
of the included TransCom regions is evaluated separately, making it possible to check whether the
prior intuitions on the quality of the target data translate to better model performance.

7.2 Feature selection
The second research question focuses on the utilization of environmental conditions as predictor
variables for the target variable which is the effective scaling factor. The list of environmental
conditions which could be used is long. The European Centre for Medium-Range Weather Forecasts
(ECMWF) models over 5000 variables, of which over 185 are of sufficient temporal and spatial
resolution (weekly estimates on a global 1× 1 degree grid). Finding a correlation to at least some
elements within the set of all effective scaling factors is therefore an almost trivial task, simply
because of the sheer amount of available variables. Instead, the focus should be on meaningful
relations between the environmental conditions and the effective scaling factor.

Based on the expert judgment of A. van der Woude, 18 distinct variables were selected. A full
list is provided in table D.5. These variables were directly taken from the ECMWF, but have been
aggregated such that a weekly value per ecoregion remained. This was done in various stages. As
the effect of the environmental conditions on the biases within the biosphere is unknown, it is also
unknown whether the biases are influenced by the max value of a certain variable (a peak in the
wind speed could result in a bias), the min value (a bias could be introduced by a sudden drop
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Figure 7.5: The distribution of the scaling factors from the gridded section of the state-vector com-
pared to the effective scaling factor capped at ±4σ grouped by TransCom region. The effect of
using the effective scaling factors compared to the raw scaling factors varies greatly depending on
the TransCom region
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in temperatures), the average value (the average solar radiation over some period of time could be
relevant), or the sum (the biosphere could be influenced by the absolute quantity of precipitation).
Therefore, some variables have been aggregated in several different ways, again based on the expert
judgment of A. van der Woude. However, our intuition did lead us to believe that these aggregation
methods are mainly relevant for lower spatial resolutions. A maximum temperature within a 1× 1
degree grid cell is interesting, but this single maximum value is not a proper representative of the
entire ecoregion. As such, these different aggregation methods were only used to reach a global
landscape of 1× 1 weekly variable values. Combining the different variables with the different
aggregation methods resulted in 36 potential predictor variables.

To reach the desired ecoregion resolution, all variables have been aggregated using a weighted
average based on the total ecosystem respiration (TER). This TER can be interpreted as the com-
bined carbon ‘exhaled’ by the ecosystem and is closely related to the overall NEE within an ecosys-
tem (Lasslop et al., 2010, see figure 8). As opposed to NEE, the TER is less influenced by seasonality
and thus remains relatively constant throughout the year. This makes averaging substantially eas-
ier. Therefore, all environmental variables are aggregated based on the average TER over the period
2000-2020. One downside is that the TER only applies to terrestrial ecoregions. However, the fluxes
from the water PFT scale well with total surface area and thus the fluxes from the water ecoregions
are aggregated using an average weighted by the surface area of each grid cell.

One final step remains for determining the environmental conditions that could be used as pre-
dictor variables. Background literature suggests that the main driving force behind anomalies in net
ecosystem exchange (NEE), which is analogous to the net exchange of carbon between the atmo-
sphere and the biosphere, are anomalies in temperature (Rödenbeck et al., 2018). These anomalies
in NEE are difficult to capture within a biosphere model and as a result, are likely to be the cause of
biases within this model. The assumption is therefore that the anomalies in temperature are among
the factors determining the corrections made by the EKF, meaning that they affect the effective scal-
ing factor. This line of reasoning resulted in not the direct variable value being used as a predictor
variable, but the variable expressed in anomaly space.

In accordance with Rödenbeck et al. (2018), the anomaly is determined based on a rolling
monthly mean over 11 years. The eventual implementation of monthly anomaly is similar to the
monthly mean model, with the precise definition being

vvv∆
t = vvvt − (

1
|VVV rolling

t,m |
· ∑

vvv∈VVV rolling
t,m

vvv)

∣∣∣∣∣∣
month(t)=m

, (18)

where t is time in weeks, vvvt ∈ Rr is one of the variables listen in Table D.5 at time t, with each
of the r elements is linked to one of the ecoregions listed in table D.4 and vvv∆

t the monthly anomaly
at time t. month(t) is an operator extracting the month of t, where m ∈ [Jan,Feb, ...,Dec] is one of
the 12 months of the year. VVV rolling

t is a rolling window containing at most 11 years of variable data
ending at t; VVV rolling

t,m is the set of elements in VVV rolling
t where month(t) = m.

Now, for the initial test on whether the inclusion of environmental conditions as predictor vari-
ables could result in a reduction of the mean bias within a full inversion run, we started with only
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using the t2m_AVG monthly anomaly. This variable is the average temperature at 2 meters above the
earth’s surface and is the variable used in Rödenbeck et al. (2018). The usage of other variables is
discussed in Section 9.2.

7.3 Used models
This thesis tests the performance of three separate models on the task of forecasting the effective
scaling factor lll. The monthly mean model adjusted to the new data representation serves as a bench-
mark, as it has been shown in Part I that this model is currently the best available forecast model.
The other models are the seasonal autoregressive integrated moving average (SARIMA) and the sea-
sonal autoregressive integrated moving average with exogenous factors (SARIMAX) models. These
models have been selected based on how well they are able to either mitigate a potential issue within
the problem description or how well they are able to utilize potential sources of information. An
overview of these criteria, along with their priority and an explanation, is given in Table 7.1.

Furthermore, the chosen models will only be trained on the ecoregions within the North Ameri-
can boreal, North American temperate, Eurasia Boreal, Eurasia Temperate, and Europe TransCom
regions, as there are the regions with most confidence can be put in the effective scaling factor.

Note that in total 68 ecoregions are included in the analysis, which means that lll ∈R68 (see Table
D.4 for a full overview).

7.3.1 Monthly average

As already mentioned in Part I, the monthly average model has been developed as an intuitive and
simple method for utilizing the seasonal pattern within the state vector depicted in Figure 1.3. Next
to its simplicity, it ranks remarkably well on the top 4 criteria listed in Table 7.1 as shown in Table
D.6.

The description of the monthly average model has not changed much compared to the model in-
troduced in section 2, Equation 15. The only difference is the data used to ’train’ the model. Instead
of the state-vector λλλ, the effective scaling factor lll introduced in Section 7.1.1 is used, resulting in
the final definition

M monthly(t) =
1

|LLLtrain
m |

· ∑
llla∈LLLtrain

m

llla

∣∣∣∣∣∣
month(t)=m

, (19)

where t is the time in weeks, m ∈ [Jan,Feb, ...,Dec] is one of the 12 months and LLLtrain
m is the

set of all llla
t ∈ LLLtrain where month(t) = m. Again, all this model really does is group all previous

scaling factors from every month and determines the average.
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Table 7.1: Overview of the various problems and potential information sources encountered when
creating an ML model of the transition function of the state-vector within CTDAS. Each point
is listed according to a priority, where the higher the priority, the more important it is for the
problem/information source to be mitigated/utilized.

Priority Problem/ infor-
mation source

Problem description

1 Limited data
availability

Only a single time series is available. In theory, it would be possible to
train on multiple state-vector series of different inversion runs. In prac-
tice, however, such inversion runs are computationally very expensive,
requiring close to 6 weeks on 50 CPUs for a single run. Furthermore, it
is uncertain how well a transition model trained on one state-vector series
would generalize to another state-vector series. As such, it is best to work
under the premise of having only a single series of state-vectors available

2 Integration
within CTDAS

As stated within the introduction, our interest is not in just developing a
transition model M for the EKF, but in improving the CTDAS as a whole.
For this purpose, it is not only important for the ML implementation to
be trainable on a limited amount of data, but also that it can continue
learning while CTDAS continues analyzing new weeks. Either some form
of online learning is needed, or the cost of retraining the ML model needs
to be minimal

3 Noise within
data

One of the most pressing issues with the available data, is its quality. As
mentioned in Section 7.1, the data contains a substantial amount of noise,
even after pre-processing. The ML algorithm should therefore be rela-
tively robust against noise

4 Temporal de-
pendencies

The introduction of Part II mentioned the temporal patterns found within
the state-vector and touched upon some physical processes justifying the
assumption of temporal dependencies within the state-vector. These tem-
poral patterns could prove to be useful for training an ML-model

5 Exogenous vari-
ables

Also mentioned in the introduction of Part II, are the potential conditions
determining the state-vector. Temperature anomalies result in anomalies
in NEE, which are notoriously hard to capture within biosphere models.
Other abnormal environmental conditions could also affect the state vec-
tor; thus, these conditions could contain valuable information when train-
ing a transition function.

6 Spatial depen-
dencies

A downside of inversion methods are the introduced dipoles, where an
error in one region is compensated by surrounding regions (Jacobson et
al., 2007b). This means that it is likely that a spatial correlation exists
between the scaling factors of various regions.
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7.3.2 SARIMA

The SARIMA model was initially selected as it is a relatively simple model that can be trained
on a single and relatively short time-series (Box, Jenkins, Reinsel, & Ljung, 1976). Furthermore,
it provides more freedom to utilize more temporal dependencies compared to the monthly mean
model. A downside is that it does not allow for a multivariate output, meaning that one SARIMA
model needs to be trained for every included ecoregion. Furthermore, the bare SARIMA is unable
to utilize exogenous variables. For a complete overview of how well it matches the selected criteria,
see Table D.7.

The seasonal autoregressive integrated moving average (SARIMA) model is a multiplicative
model of a auto-regressive integrated moving average (ARIMA) model with a seasonal component.
Box et al. (1976) defines the SARIMA models using the notation (p,d,q)× (P,D,Q)s, where p is
the order of the regular auto-regression (AR) term, d the order of the integration (I) term, q the
order of the moving average (MA) term, P, D, and Q are their respective seasonal equivalents, and
s represents the seasonality of the model. Furthermore, Box et al. (1976) suggests using the Box-
Jenkins method for finding the values of these hyperparameters. This method consists of three steps:

1. Model selection: This step requires a thorough analysis of the data. By looking at the cor-
relations within the target time series, an initial estimate is provided for the seasonality (S),
auto-regression (AR), integration (I), and moving average (MA) terms of the model.

2. Coefficient estimation: Once an appropriate model is selected, the coefficients within the
models are estimated.

3. Model evaluation: The model is evaluated on the training data, not the testing data. The
main evaluation metric is the distribution of the residuals. In essence, the residuals should be
independent of each other. If they are not, step 1 has to be redone.

Note that only the training data LLLa ∈ R888×68 has been used for the hyperparameter selection.
The full Python implementation of the Box-Jenkins method can be found in the SARIMA.ipynb
notebook provided in the GitHub repository of this thesis.

Model selection Step one of model selection is checking whether the series of effective scaling
factors had a unit root. This is used to determine whether the mean of the series is stationary. An
augmented Dicky-Fuller test confirmed that none of the effective scaling factors of the 68 included
ecoregions contained a unit root. As such, both the d and D terms are set to 0. This effectively
makes the SARIMA model a SARMA model, but for the sake of consistency, we will keep referring
to the model as the SARIMA model.

The second step is determining the s, p, q, P, and Q terms. This is done using the autocorrelation
function (ACF) and partial autocorrelation function (PACF). Interpreting the resulting graphs is not
as straightforward as with most graphs, so before analyzing the graphs, some background informa-
tion is given.
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Autocorrelation function: The ACF shows the direct correlation between a time series and sev-
eral lagged versions of the same time series. This is used to determine the q and Q terms since in a
MA model without AR and I term, every time point is determined by the average of some underlying
variable at the same point and the q prior points. Therefore, peaks at lag = 1 indicate that q = 1,
peaks at lag = 52 indicate Q = 1, peaks at lag = 1,52,53 indicate q = Q = 1, etc.

Partial autocorrelation function: The PACF shows the correlation between a value in the time
series and several lagged versions of the same time series. It is a partial function as it accounts for
any correlations between the current lag and any smaller lags. Therefore, it is used to determine
the p and P terms. Peaks at lag = 1 indicate that p = 1, peaks at lag = 52 indicate P = 1, peaks at
lag = 1,52,53 indicate p = P = 1, etc.

Computing both the ACF and PACF for all lags over the entire training dataset is expensive.
Therefore only the first 110 lags of all effective scaling factors of the ecoregions within the Europe
TransCom region have been analyzed (see Figure B.2). The Europe TransCom region has been
selected as this the effective scaling factors from this TransCom region has been determined to be
most reliable (see Section 7.1.2) and 110 lags cover two cycles of the expected seasonal pattern.

The first thing to notice is the small peak in both the autocorrelation function (ACF) and partial
autocorrelation function (PACF) at a lag of 52. This confirms our suspicion that there is a seasonal
effect and thus the s can be set to 52 with a P and Q terms of at least 1.

Now, the problem is that a general set of hyperparameters should be found which fit all of the
analyzed series of effective scaling factors. Figure B.2 shows that there is a substantial difference in
the lags which are significantly correlated between the series of effective scaling factors. In general,
p = q = 2 seems to be a good fit for some time series (e.g. figures B.2e and B.2l), while for others
only a model with P = Q = 1 seems to be a proper fit (e.g. figures B.2a, B.2h, and B.2k, and some
seem to be best described by a combination of the two (e.g. figures B.2b and B.2i). Therefore the
(2,0,2)× (1,0,1)52 model seems to be the simplest model which can be applied to most series.

Parameter estimation After finding an initial guess for the hyperparameters of the SARIMA
model, the values of the coefficients need to be found. The used SARIMA implementation (Seabold
& Perktold, 2010) uses maximum likelihood estimation (MLE) for this task. The found coefficients
show a substantial variation in their 95% confidence interval, but clearly show that the white noise
term remains one of the most dominant factors determining the made forecasts (see Figure B.3).
However, a substantial amount of coefficients are found to be significantly greater or smaller than 0,
implying that at least some of the variance within the training data is captured.

Model evaluation While some variance is captured within the SARIMA models, the white noise
components remain a dominant factor within the forecasts. This warrants additional analysis of
the residuals of the model to determine whether there are correlations between lags that have been
missed and should still be included. If these correlations are missed, this would result in a depen-
dency between the residuals. Therefore, a Ljung-Box test is used to test for dependencies within the
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Table 7.2: The results of the Ljung-Box test on the residuals of the SARIMA models trained on
the 15 ecoregions within the Europe TransCom region. The null hypothesis of the residuals being
independent of each other can only be rejected for ecoregion 195.0 at a significance level of p < 0.05.

Ljung-Box
statistic
lag = 110

Ljung-Box
statistic
lag = 110

Ljung-Box
statistic
lag = 110Ecoregion p Ecoregion p Ecoregion p

191.0 63.9 1.00 196.0 82.1 0.98 201.0 123.4 0.18
192.0 72.7 1.00 197.0 71.5 1.00 202.0 133.3 0.07
193.0 67.6 1.00 198.0 103.5 0.66 204.0 120.5 0.23
194.0 83.8 0.97 199.0 66.2 1.00 206.0 84.0 0.97
195.0 137.1 0.04* 200.0 93.6 0.87 209.0 56.2 1.00

* - significant at the level of p < 0.05

residuals across the same 110 lags used earlier.
Table 7.2 shows that the residuals of almost all ecoregions contain no significant correlation

within any of the tested lags and can thus be considered white noise. Only ecoregion 195.0 contains
a significant correlation. Table D.4 shows that this ecoregion is associated with the tropical forest
PFT and table D.1 shows that this PFT makes up only 0.1% of the total surface area of the Europe
TransCom region and thus contributes very little to the overall flux landscape of the entire TransCom
region. Furthermore, the listed p-values in Table 7.2 did not account for multiple comparisons.
Therefore, it is reasonable to assume that providing extra coefficients to the (2,0,2)× (1,0,1)52
model will not result in a meaningful improvement on the TransCom region scale. Hence, the
(2,0,2)× (1,0,1)52 model is selected to be the final model.

7.3.3 SARIMAX

The final proposed model is the SARIMAX model. The only difference between this model and
the SARIMA model, is that it can use exogenous variables for additional information. It does so
by adding a coefficient for each used exogenous variable, capturing any linear correlation between
the exogenous variables and the target variable. As explained in Section 7.2, only the monthly
temperature anomaly is used as such an exogenous variable. Note that the Future iterations could
also look into other variables, further discussed in Section 9.2.
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Chapter 8: Experimental Setup
As explained in the previous section, the data used for this part of the thesis is the set of all weekly
effective analyzed state vectors (LLLa ∈ R68×1096) of the years 2000 to 2020. This set is divided into
17 years of training data (LLLtrain ∈R68×888) and 4 years of testing data (LLLtest ∈R68×208) according
to an approximate 80−20% split. To test how much data is needed for each model to converge to its
optimal performance, the training data is subdivided into 17 chunks, one for each year of available
training data. This process is depicted in Figure 8.1.

The results from Part II indicate that the models should be evaluated in flux space. Further-
more, Section 7.1 showed substantial differences within the distribution of effective scaling factors
between TransCom regions. Combine this with the goal of minimizing the budget imbalance de-
scribed in Equation 1 and the main performance measure of modeled effective scaling factors LLL
can be set to the mean error (ME) in flux space, where each TransCom region (tc) is evaluated
separately:

ME(LLL)tc =
1
|T |

· ∑
t∈T

∑
r∈Rtc

(lr,t − la
r,t) · f priorr,t , (20)

where T is the set of all weeks in the testing dataset, Rtc is the set of all ecoregions within
TransCom region tc, llla is the effective analyzed scaling factor, and f priorr,t is the total flux of ecore-
gion r at time t. The mean absolute error (MAE), root-mean-square error (RMSE), mean absolute
percentage error (MAPE), and coefficient of determination (R2) are also included as secondary per-
formance measures and are determined using the same structure.
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2000 2010 20202017

Year

Figure 8.1: Illustration of the procedure used to subdivide the training data into smaller sets. Each
set is defined as LLLtrain

n , where n ∈ N is an integer representing the number of years of effective
scaling factors present within the set, and N = {n ∈N | n ≤ 17}. Note that LLLtrain

n ⊂LLLtrain
n+1 ∀n < 17.
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Chapter 9: Results
This part discusses whether the implementation of the SARIMA and SARIMAX models, which
in the remainder of the section will be referred to as the SARIMA(X) models, could provide an
improvement over the current best transition model, being the monthly mean model. Due to a
substantial amount of noise within the original state vector, these SARIMA(X) models, along with
the monthly mean model to which they are compared, are not trained on the direct state vector, but
on an aggregated version referred to as the effective scaling factor per ecoregion. Furthermore, 38
exogenous variables have been selected that could be used to provide additional information to the
SARIMAX model, of which for now only the t2m_AVG variable is used as background literature lists
this variable most likely to be correlated with anomalies in NEE.

This results section first discusses the performance of the SARIMA(X) models with respect
to the new benchmark of the monthly mean model, mainly focusing on the ME as the priority is
minimizing the budget imbalance after a full inversion run. Afterward, the available data is more
thoroughly analyzed to find explanations on why the SARIMA(X) models behave as they do. Fi-
nally, some observations are made hinting at how well the discussed models could be implemented
within CTDAS.

9.1 Performance of the SARIMA(X) models
The monthly mean model results in a larger reduction in ME than both the SARIMA and SARIMAX
models. Figure 9.1 shows that across all TransCom regions, the ME of the monthly mean model is
closest to 0 of all models, with the ME within the North American Temperate and North American
Boreal TransCom regions approaching 0. The ME of the SARIMA(X) models are only marginally
better than the prior model. As the ME is the main performance measure used for determining the
bias within the flux-landscape, it provides a strong argument that the additional temporal dependen-
cies utilized by the SARIMA(X) models did not result in a bias reduction. A possible explanation
of why the SARIMA(X) models are unable to utilize the temporal dependencies can be found in the
variability within the state vector elements.

9.2 A deeper analysis of the available data
Figure 9.2 shows that the effective scaling factor shows seasonal heteroskedasticity, which could po-
tentially limit the effectiveness of the SARIMA(X) models. Both the SARIMA and the SARIMAX
models work under the assumption that the time series upon which they are trained is produced by
a stationary process (Box et al., 1976). This implies that both the mean scaling factor and the vari-
ability of the scaling factor should be independent of time. In other words, the series should have
a constant mean and be homoscedastic. As the variance within the time series shows a seasonal
variance, the series is heteroscedastic, violating the assumption of time series being stationary. Due
to this heteroscedasticity, the SARIMA(X) models might not perform optimally, explaining why
these models are unable to reduce the ME compared to the prior model in flux space. Reducing this
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Figure 9.1: The performance of the monthly mean, SARIMA, and SARIMAX models on 4 years
of test data (2017-2020) compared to the prior flux model, evaluated in flux space. The x-axis rep-
resents the number of years used for training the models, where 1 training year entails the model
had been trained only on data from 2016 and 17 training years entails a model trained on the data
from 2000 to 2016. The y-axis is either the mean error (ME) or root-mean-square error (RMSE),
determined by the weekly difference between the estimated and optimized flux within the Europe,
North America Temperate, and North America Boreal TransCom regions (N = 4∗52 = 208). As the
y-axes are not aligned, the ‘target’-line is added as a visual aid representing the values a well-trained
model should approach. The performance on the Eurasia Temperate and Eurasia Boreal TransCom
regions are placed in Figures B.4 and B.5in the appendix, along with other performance measures
as this data did not give any additional insights.
Notice how the SARIMA(X) models have very similar performance, with the monthly model per-
forming substantially better with respect to ME but not RMSE. Furthermore, the ME of the monthly
model is lower than the prior model after only using a single year of training data and flattens out
after using approximately 5 years.

45



Figure 9.2: Four examples of seasonal heteroskedasticity within the effective scaling factor of ecore-
gions. The chosen examples are the 4 largest regions within the North American Boreal TransCom
region (see Table D.1). The figures show the monthly mean of the effective scaling factor of the first
17 years of training data. The difference in variance is shown by a single standard deviation of the
mean, where the variance is substantially bigger in the 4th, 5th, and 9th month compared to all other
months.

heteroscedastic behavior of the effective scaling factor should be prioritized in any effort to improve
the performance of the SARIMA(X) models. Before the heteroscedastic behavior can be minimized,
the origin of this behavior needs to be investigated. This could be related to the correlation between
the effective scaling factors and the prior flux.

The extreme values of the effective scaling factor are highly correlated with the prior flux to
which the effective scaling factor applies. This is not the case for the unmodified state vector. Figure
9.3 shows that the distribution of extreme scaling factors (i.e those smaller than 0 and greater than
3) is, compared to the unmodified scaling factor, disproportionately centered around a prior flux of
0. This can be explained by the aggregation method used to determine the effective scaling factor,
which is essentially a weighted average based on the prior flux. This means that the sum of the
weighted scaling factors is divided by the sum of all prior fluxes. However, if this sum approaches
0, the resulting weighted average goes to plus or minus infinity. The prior flux can be 0 during some
spring and autumn months when most ecosystems change from being a carbon sink to a carbon
source and vice-versa (Baldocchi et al., 2001). While the effect of most extreme cases has been
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Figure 9.3: The correlation between the prior flux and the first year (2000) of effective analyzed
scaling factor (llla; left) and the unmodified analyzed scaling factor (λλλa; right) of the North Ameri-
can Boreal, North American Temperate, Eurasia Boreal, Eurasia Temperate, and Europe TransCom
regions. The hue of the data points represents the density of data points within the plot and is de-
termined using Gaussian kernel density estimation from the SciPy package within Python (Virtanen
et al., 2020). The plot shows that the variance within the effective scaling factor (left) is highly cor-
related with the prior flux, with all extreme effective scaling factors being located near a flux prior
flux of 0. This is not the case for the unmodified scaling factor (right), where the extremes are more
evenly spread across the prior fluxes.

mitigated by introducing a cap on the effective scaling factor of ±4σ from the mean, most of the
introduced variance remains. This implies that a different aggregation method should be used in
future iterations of the project. One option would be to use the absolute prior flux to create a
weighted average, but this is only a viable option if no (or barely any) di-poles exist within the
to-be-aggregated data. However, the found heteroscedasticity does not explain why the SARIMA
and SARIMAX models have such similar performance. This explanation has to be sought in the
correlation between the temperature anomalies and the effective scaling factor.

Figure 9.4 shows that there is no linear relationship between the effective scaling factor and the
monthly temperature anomaly. The difference between the SARIMA and the SARIMAX models
is that the SARIMAX model is able to utilize multiple exogenous variables. Just like a linear re-
gression, the SARIMAX model aims to find a single coefficient that optimally matches the linear
correlation between the exogenous variable and the target variable. This means that the correlation
between the exogenous variable and the predictor variable has to be linear. Figure 9.4 shows that if
any correlation exists between the monthly average temperature anomaly and the effective scaling
factor, this correlation does not appear to be linear. As a result, the monthly temperature anomaly
will not contribute to the ability of the SARIMAX models to forecast the next effective scaling fac-
tor. If the monthly temperature anomaly does not have this linear correlation with the scaling factor,
it would be best to first test the other available environmental conditions for such a linear correlation
before using them as exogenous variables to the SARIMAX model.
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Figure 9.4: The correlation between the effective scaling factor and the mean temperature anomaly.
Only the ecoregions which cover more than 10% of their respective TransCom region are taken
into account (see Table D.1). Again, the color is used the give an indication of the density and is
determined using the Gaussian kernel density estimation function from the SciPy package (Virtanen
et al., 2020). The figure shows that there is no linear correlation between the effective scaling factor
and the monthly temperature anomaly. A test of the Pearson’s correlation coefficient (r) between the
effective scaling factor and the monthly temperature anomaly within each of the tested ecoregions
further confirms this finding as the r values ranged between −0.02 and 0.04
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Figure 9.5: Pearson’s correlation coefficient between all other environmental conditions gathered for
their potential of being a predator of the scaling factor within ecoregions which cover at least 10%
of the surface of their TransCom region. For a translation of the index of the ecoregion to the actual
name of the ecoregion, see Table D.4. The largest linear correlation is between the ssr_AVG and the
effective scaling factor of ecoregion 7.0 (North American Boreal - Semitundra), where r = −0.11.
While not entirely equal to 0, the correlation remains weak at best.

Evidently, this sought linear correlation between the effective scaling factor and an exogenous
variable does not exist within any of the included environmental conditions. Figure 9.5 shows that all
correlation coefficients between the environmental variables and the effective scaling factor are close
to 0. This implies that any effort to include other variables into the SARIMAX model will therefore
not result in an improved forecast model. However, there are still some positive observations that
can be made from the conducted experiments.

9.3 The fit within CTDAS
The final aspect of the evaluation of the conducted experiments focuses on how well the proposed
models would fit within CTDAS. This is judged based on how much data is needed to train the
model. As running the EKF within CTDAS is computationally expensive, it is infeasible to do a
full inversion run, train the transition model on the produced state vectors, and afterward do a new
inversion with the trained model. The to-be-implemented model should be able to learn during
the inversion run, where it would be beneficial to have a transition model that can improve the
performance of the entire inversion system as early on in the run as possible. The amount of data
needed to train each of the proposed models can be found back in Figure 9.1.

Figure 9.1 shows that the monthly mean model already achieves a substantial reduction in the ME
over the prior model using only a single year of training data. The absolute ME of the monthly mean
model using only a single year of training data is comparable to the ME of the prior flux model within
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the North American Temperate TransCom region (both around 0.13 [PgC ·yr−1]), substantially better
in the Europe TransCom region (0.22 to 0.33 [PgC ·yr−1]), and almost fully compensated in the
North American Boreal TransCom region (0.06 to 0.29 [PgC ·yr−1]). The RMSE of the monthly
mean model remains relatively constant and only improves marginally as more training data is used.
This implies that the monthly mean model could provide an improvement to CTDAS using only a
single year of training data.

Furthermore, Figure 9.1 also shows that all models converge after approx 5 years of training data.
Around using 5 years of training data, the absolute mean error of the monthly mean model converges
to around 0.17, 0.06, and 0.12 [PgC ·yr−1] for the Europe, North American Temperate, and North
American Boreal TransCom regions respectively. While the SARIMA(X) models do improve with
more used training data and also converge around 5 years, the absolute ME remains comparable
to the prior model in the Europe and North American Temperate TransCom regions and is only
substantially reduced in the North American Boreal TransCom region (0.19 to 0.29 [PgC ·yr−1]).
As a result, the optimal performance of all models can be expected after training on approximately 5
years of scaling factors. This also gives a hint on how a potential rolling mean model would suffice
with a window of 5 years.
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Chapter 10: Discussion
This part focused on the implementation of the SARIMA and SARIMAX models. The results
indicate that these linear forecast models did not outperform the monthly mean model with respect
to the ME in flux space, which has been determined in part I to be the main evaluation criteria as
it most likely to resemble the budget imbalance during a full inversion run. A possible explanation
for why the SARIMA(X) models are unable to improve upon the monthly model can be found in
the heteroscedasticity of the effective scaling factor. The aggregation method used to determine the
effective scaling factor per ecoregion introduces additional variance if the prior flux to which the
scaling factor is associated approaches 0. While these scaling factors are not as interesting as they
have a limited effect on the combined flux landscape, this introduced variance could complicate the
extracting of the temporal patterns within the effective scaling factor.

The reason why the SARIMAX model has almost identical ME and RMSE to the SARIMA
model, can be found in the correlation between the effective scaling factor and the monthly temper-
ature anomaly that was used as the predictor variable. This correlation, if it exists at all, is (highly)
non-linear. SARIMAX can only utilize linear relationships and thus the inclusion of the monthly
temperature anomaly did not provide any useful information to the SARIMAX model. None of the
variables which were selected to potentially correlate with the biases in the biosphere model had a
substantial linear correlation to the effective scaling factor. Several potential reasons can be given
for why these linear relations were not found. The first one again relates to the additional variance
introduced by the aggregation method used to determine the effective scaling factor. As this addi-
tional variance is not related to the environmental conditions, it could obscure a small linear relation
that does exist. The second potential reason relates to how the effect of anomalies in environmental
conditions on the biases within the biosphere last longer than a single week. It has been shown
that severe droughts can affect the NEE within an ecosystem for several years after this drought has
occurred (Kannenberg et al., 2020). Therefore an environmental anomaly at t could also affect the
following week’s fluxes, or potentially all fluxes of the following year. This temporal dependency is
not captured in a linear correlation. A third reason could be that a correlation does exist, but that this
correlation is (highly) non-linear. This would make sense as a linear relation between a model error
and an environmental condition is relatively easy to find. If it is easy to find, it is more likely that the
researchers who build the biosphere model focus their efforts to correct this model error. As such, it
is likely that any correlation between the biases within the biosphere and environmental conditions
is difficult to find, and thus (highly) non-linear.

The final subsection of the results, Section 9.3, focused on the integration of the developed
models within CTDAS. As the ME of the SARIMA(X) models in flux space is comparable to the
ME of the prior model, neither model is the current implementation a viable candidate to replace the
currently implemented smoother transition model. There are however a few possible improvements
to the current implementation which could potentially improve the performance of the SARIMA(X)
models.
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10.1 Potential improvements
As already mentioned in the results section, the used aggregation method includes additional vari-
ance which could limit the effectiveness of the SARIMA(X) models. A relatively simple ’fix’ would
be to use a weighted average based on the absolute prior flux. This method has a similar behavior
as the currently implemented effective scaling factor, except that no division is needed where the
denominator approaches 0. A possible downside is that this method will produce non-sense scal-
ing factors if the set of the to-be-aggregated fluxes contains both positive and negative values. The
extent to how much this would be an issue should be investigated.

Instead of reducing the seasonal heteroskedasticity within the effective scaling factor, another
approach would be to use a model more resistant to this heteroscedasticity. The autoregressive con-
ditional heteroscedasticity (ARCH)-model has been specifically designed to capture the conditional
variability, with the generalized autoregressive conditional heteroscedasticity (GARCH)-model pro-
viding a more flexible lag-structure (Bollerslev, 1986). By subtracting the GARCH-model from an
ARMA model, the conditional variability is in a sense filtered out of the time series before it is
passed down to the ARMA model. This principle could be simplified even further by dividing the
0-centered mean-stationary process by the variability of a rolling window (Stockhammar & Öller,
2012).

A totally different approach would be to change the target data of the ML model from a scaling
factor to the flux corrections made by the EKF. Suppose we refer to these corrections as µµµ, which
is of the same size as the original scaling vector λλλ with s elements (i.e. µµµ,λλλ ∈ Rs). This µµµ is then
defined as

µµµ = λλλ⊙ fff prior − fff prior = fff prior ⊙ (λλλ−1), (21)

where fff prior ∈ Rs is a vector of the prior fluxes associated with each element in the scaling vector
and ⊙ is element-wise multiplication operator (i.e. the Hadamard product). This approach would
completely mitigate the additional variance introduced by prior fluxes being close to 0 as µµµ can
be aggregated by simply taking the sum of all the elements within an ecoregion, no divisions are
needed. There is a risk of the background scaling vector containing exceptionally large values as
this division is needed to move back from µµµ to λλλ since

λλλ = µµµ⊘ fff prior +1, (22)

where ⊘ is element-wise division operator (i.e. the Hadamard division). How this affects the func-
tioning of the EKF should be investigated.

Not only will using the µµµ instead of the λ mitigate the issue of heteroscedasticity within the
effective scaling factor, but it also solves the issue of evaluating the model in flux space, while
training the model on scaling factors. This poses an issue, as the error measure as used for MLE in
the coefficient determination of the SARIMA(X) models is now disconnected from the final model
evaluation metric of ME in flux space. The results of the SARIMA(X) models in scaling vector
space (referring to the λλλ definition of the scaling vector) are shown in figures B.6 and B.7. These
figures show that the ME, MAE, RMSE and R2 of the SARIMA(X) models are comparable to those
of the monthly mean model if more than 3 years of training data are used. This gives an indication
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that the fit of the SARIMA(X) models with respect to the target data is comparable to the fit of the
monthly mean model. However, as this fit in scaling vector space is not guaranteed to result in a
good fit in flux space, the resulting flux landscape is substantially different.

Another suggestion for improving the SARIMA(X) approach would be to, just like the monthly
model, make a forecast model of a monthly scaling vector instead of a weekly scaling vector. This
would most likely reduce the noise within the target data even further as more data points are ag-
gregated making it easier to extract the seasonal patterns. It should however be noted that this does
limit the possibilities of including the shorter temporal dependencies. An additional benefit is that
the number of steps between the seasonal dependencies is reduced from 52, sometimes 53, steps
to 12. This would especially be useful for future gradient descent based recurrent neural network
(RNN) implementations, which often suffer more from the vanishing gradient problem the further
the temporal dependencies are separated from each other (Hochreiter, 1998).

A final suggestion for the improvement of the SARIMAX model, would be to perform an ex-
tensive analysis of the relationship between extreme environmental conditions and biases within the
biosphere and use this analysis to find a representation of the environmental condition which results
in a linear correlation between this variable and the scaling factor. We know that the scaling factors
are driven by environmental conditions, and thus there should be some correlation between the two.
One approach would be to use principal component analysis (PCA) to compress multiple environ-
mental variables into a lower dimensionality. This could be effective as major dependencies exist
between the environmental conditions. An increase in solar radiation results in a higher tempera-
ture, but a high soil moisture content could reduce this increase in temperature. As such, a linear
combination of various environmental conditions could provide a set of variables better capable of
capturing the relation between extreme conditions and the scaling factor.

10.2 Alternative ML models
The monthly average, SARIMA and SARIMAX models are intended to be a first attempt at captur-
ing the transition model of the EKF. The decision to start with the implementation of the SARIMA(X)
models has been based mainly on the two criteria with the highest priority, the ability to be ‘trained’
on limited data and easy integration within CTDAS. Once training data is shaped such that the
SARIMA(X) models can provide a meaningful improvement to the prior model, more powerful
models can be considered as well. Next to the addition of using the GARCH model, other potential
models could focus more on multi-variate outputs.

In the current setting, a single model is trained for every ecoregion. This training is done inde-
pendently from each other, i.e. the spatial relation between the ecoregions is completely disregarded.
However, one of the known issues with inversion methods is the prominence of dipoles, where an
error in one region is compensated by surrounding regions (Jacobson et al., 2007b). This spatial
information might therefore be valuable when determining the transition function. Some models
which could be considered are regression forests, an artificial neural network (ANN), a recurrent
neural network (RNN), and the PROPHET model. Each of these models is discussed in more detail
below.
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Regression forests RFs are used more often in earth science systems and atmospheric inversions
(Tramontana et al., 2016) and are considered a classic and reliable choice. In a direct compar-
ison, RFs are shown to outperform a ARIMA model on a time-series forecasting task with less,
but arguably less noisy, data (Kane, Price, Scotch, & Rabinowitz, 2014). A more powerful gra-
dient boosting machine, the XGBoost algorithm (Chen & Guestrin, 2016), has shown to perform
well in correcting ocean CO2 sink models using observations and additional predictor variables
(Bennington, Gloege, & McKinley, 2022).

Artificial neural networks ANNs are considered to be more powerful, but results are more dif-
ficult to interpret than those of a RF. This is considered to be a substantial downside of ANNs
within the field of earth system science, where great value is given to the explainability of models
(Reichstein, Camps-Valls, Tuia, & Xiang Zhu, 2021a). Nonetheless, ANNs are used in the field of
earth system science in which varying degrees of success are reported. While they can be a great tool
to be used alongside traditional non-ML based methods for partitioning CO2 fluxes into photosyn-
thesis and respiration (Tramontana et al., 2020), computational costs remain a hurdle to overcome
(Stoffer et al., 2021). However, ANNs could provide a marginal improvement over RFs on the task
of time-series forecasting, but are less viable for variable selection (Ahmad, Mourshed, & Rezgui,
2017).

Recurrent neural networks ANNs are not designed for time-series analysis. A RNN is. A vari-
ant has been applied to solar radiation forecasting with reasonable success (Faisal et al., 2022). An
argument often used against RNNs is their inability to mitigate the vanishing gradient problem. This
could pose problems when trying to capture the seasonal dependencies within the scaling factors.
However, in direct comparison on a forecasting task with less, but arguably less noisy, data, a simple
RNN greatly outperformed an ARMA model (Güldal & Tongal, 2010). A downside of RNNs is
that, as already mentioned in the proposed improvements section, their ability to capture the tem-
poral dependencies within the time series diminishes as the lag between the dependencies increases
due to the vanishing gradient problem. This limits their effectiveness in capturing the seasonal de-
pendencies present within the scaling vector. As the window in which the temporal dependencies
are expected is relatively well known, feeding the lagged scaling factors into an ANN might be more
effective (based on correspondence with Prof. Dr. H. Jaeger).

PROPHET Facebook originally developed PROPHET to make time series forecasting accessible
for non-experts. By using easily interpretable parameters and providing automatically generated
visuals of the trend within the time series, the process of fitting the model is considerably easier
than most conventional forecasting methods (Taylor & Letham, 2017). The authors claim the sys-
tem is particularly well suited for data with a strong seasonal trend, missing observations or large
outliers, and historical trend changes such as product launches or logging changes. Furthermore, the
PROPHET framework is equipped with tools for multi-variate predictions. Therefore it seems to be
a viable alternative to the SARIMA model. Some literature provides evidence that the PROPHET
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model can outperform a SARIMA model (McCoy, Pellegrini, & Perlis, 2018), although it should
be mentioned that the quality of this literature is often questionable. Nonetheless, it might be worth
including in a future comparison due to the ease of implementation.

10.3 Final remarks on the integration within the CarbonTracker data assim-
ilation shell

Most of the discussion points thus far have focused on improving the scaling vector forecast model
under the experimental condition of a series of analyzed scaling vectors being available. While this
works as a proof of concept, it is still important to keep in mind that this experimental setting is a
substantial simplification of the actual problem, namely the missing state transition function of the
EKF which has to be learned during the inversion run. Therefore, it is essential that the model can
provide an improvement over the prior model as early as possible. If the implemented model only
provides an improvement in the ME after 20 years, only a single year remains in which the model is
actually useful.

The monthly model did provide a substantial improvement of the prior flux model with respect
to the ME using only a single year of training data. After using 5 years of training data, the mean
error evens out, suggesting that a moving average of 5 years would suffice as a suitable transition
model. The possibility of using a moving average connects well to one final point of discussion.

As mentioned, the series of scaling vectors used within the experimental setup was generated
using a stationary transition model. This entails that the procedure generating the scaling vectors
remained the same for all scaling vectors. However, if the transition model needs to be trained
during the inversion run, the procedure generating the background scaling vectors changes, and this
could in turn affect the procedure generating the analyzed scaling vectors. This transforms the series
of analyzed scaling vectors from being generated by a stationary process to one generated by a
potentially non-stationary process.

This is a problem, as most ML models are trained under the assumption that the used training
data is representative of the target data. If the procedure generating the analyzed scaling vectors
indeed substantially varies as time progresses, the model tries to make a forecast based on learned
patterns that no longer apply. It is known that ARMA-like models are unable to account for these
changes (X. Wang et al., 2021). While some variants exist that are able to learn in an online manner
(Liu, Hoi, Zhao, & Sun, 2016), it remains uncertain whether such models would also be able to
capture the seasonal patterns within the scaling vector. Such online learning methods are most
often based on gradient descent, which means that the gradient of a seasonal correlation would need
to be propagated for 52 timesteps. This is difficult to do given the noise within the target data
and the limited amount of available training data, especially at the beginning of the inversion run.
Furthermore, properly testing the online learning methods will be difficult given the substantial costs
of doing an inversion run.
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Chapter 11: Conclusion
Now it is finally time to summarize our findings and return to the research questions asked in the
introduction of the part, starting with the first question:

«Does the utilization of additional temporal dependencies (i.e. dependencies between time-
steps) result in a reduction of the mean bias of the prior biosphere and ocean flux with respect to the
monthly average model?»

During our noise-reducing efforts, it has been decided to not include the ocean fluxes within
our optimization efforts. The main focus was put on the gridded ecoregions where we have the most
confidence in the corrections made by the EKF. Nonetheless, the SARIMA model used to investigate
the effect of including additional temporal dependencies did not reduce the ME, which is analogous
to the mean bias, with respect to the monthly mean model. Several potential improvements to the
current implementation of the SARIMA model have been proposed, but based on the conducted
experiments, it can be concluded that the utilization of additional temporal dependencies did not
result in a reduction of the mean bias.

Next to testing whether the utilization of additional temporal dependencies would result in a
reduction of the mean bias, the second posed question concerns the inclusion of environmental con-
ditions as predictor variables:

«Could the utilization of predictor variables (i.e. temperature, precipitation), in combination
with the temporal dependencies, result in a reduction in the mean bias of the prior biosphere and
ocean flux with respect to the monthly average model?»

Again, the ocean fluxes have not been taken into account during this part of the thesis as these
have been put aside during the noise-reduction process. To test whether a meaningful predictor
variable could be used as a predictor variable for an ML model, initial tests were conducted using a
SARIMAX trained on not only the temporal dependencies used by the SARIMA model, but also on
the monthly temperature anomaly. This additional variable did not result in a substantial reduction
in the ME compared to the SARIMA model. A deeper analysis of the correlations between the
environmental variables and the effective scaling factor showed that no linear correlation between
the two seems to exist, which is a requirement for the SARIMAX to be able to use this information.

Not only did the conducted experiments answer the asked research questions, but the potential
integration within the CarbonTracker data assimilation shell (CTDAS) has been taken into account
as well. While some uncertainties remain on how the proposed models would behave during a
full inversion run, the results shown within this part of the thesis show that the monthly model can
achieve a substantial reduction in the ME using only a single year of training data. Combine this
with the finding from Part I that the monthly mean model is substantially better than the currently
implemented smoother model, it is likely that the integration of the monthly mean model within
CTDAS would result in a reduction of the overall budget imbalance.
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Acronyms

ACF autocorrelation function
ANN artificial neural network
AR auto-regression
ARCH autoregressive conditional heteroscedasticity
ARIMA auto-regressive integrated moving average
ARMA auto-regressive integrated moving average

CAMS Copernicus Atmosphere Monitoring Service In-
formation

CE carbon exchange
CO2M Copernicus Anthropogenic Carbon Dioxide

Monitoring mission
CTDAS CarbonTracker data assimilation shell
CTE CarbonTracker Europe

DA data assimilation
DL deep learning
DoF degrees of freedom

ECMWF European Centre for Medium-Range Weather
Forecasts

EKF ensemble Kalman filter

GA genetic algorithm
GARCH generalized autoregressive conditional het-

eroscedasticity
GCB Global Carbon Budget
GCP Global Carbon Project
GFAS Global Fire Assimilation System
GPP gross primary production
GridFED Gridded Fossil Emissions Dataset

I integration

MA moving average
MAE mean absolute error
MAPE mean absolute percentage error
ME mean error
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ML machine learning
MLE maximum likelihood estimation

NEE net ecosystem exchange

ObsPack Observation Package

PACF partial autocorrelation function
PCA principal component analysis
PFT plant functional type

R2 coefficient of determination
RF regression forest
RMSE root-mean-square error
RNN recurrent neural network

SARIMA seasonal autoregressive integrated moving aver-
age

SARIMAX seasonal autoregressive integrated moving aver-
age with exogenous factors

SARMA seasonal autoregressive moving average
SiB4 Simple Biosphere model 4

TER total ecosystem respiration
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Glossary

atmospheric inversion The process of optimizing surface fluxes based
on atmospheric measurements.

Box-Jenkins method A process described by Box et al. (1976) on how
to find the hyperparameters of a SARIMA model.

data assimilation The practice of combining different sources of
information to estimate possible states of a sys-
tem as it evolves in time.

diurnal cycle A pattern which recurs every 24 hours.

eco-region All cells within a TransCom region which have
the same PFT.

endogenous variable A variable which is influenced by the model. A
change in the model would also affect this vari-
able. Antonym of an exogenous variable.

exogenous variable A variable that is determined outside of the
model. It is not influenced by the inner mechan-
ics of the model. Antonym of an endogenous
variable.

Hadamard division The element-wise (or point-wise) division of vec-
tors and matrices.

Hadamard product The element-wise (or point-wise) multiplication
of vectors and matrices.

heteroscedastic A series which varies in its variance, i.e. not ho-
moscedastic,

homoscedastic A term describing the variance within a time se-
ries. Homoscedasticity implies that the variance
within the time series does not change over time.
For example, if an arbitrary time series xxx is con-
sidered homoscedastic, the variance within an ar-
bitrary subsection xxx is the same as the variance
within a different subsection of xxx. If this is not
the case, time series xxx is considered to be het-
eroscedastic.
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inversion run A full atmospheric inversion run. Within the con-
text of CTDAS, this entails using the EKF to find
optimal values for the state vector λλλ.

Paris agreement A treaty adopted by 195 countries that commit to
combating and mitigating the effects of climate
change.

plant functional type A classification method used for categorizing
plants according to their physical, phylogenetic,
and phenological characteristics. See Olson
(1992) for more information.

predictor variable A variable that can be used to predict the tar-
get variable. In an ML pipeline, it is intuitive to
see the predictor variables as the ‘input’ variables
and the target variable as the ‘output’ variable.

SARIMA(X) A conjunction of the SARIMA and SARIMAX
models. It is used to refer to them both at the
same time.

stationary A term used for specifying that the method of
generating a series of numbers does not vary over
time. A stationary mean entails that the mean of
an arbitrary subsection of an arbitrary time series
x is the same as the mean of a different subsec-
tion of the same time series x. As a result of a
time series being stationary, the time series has a
constant mean and is homoscedastic.

target variable A variable that an ML-model tries to model based
on a (set of) predictor variable(s).

TransCom region One of the 11 land regions and 11 ocean regions
which together cover the entire globe as defined
by Gurney et al. (2003).

transport model A model which translates surface fluxes to atmo-
spheric concentrations.
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vanishing gradient problem The vanishing gradient problem is one of the
main hurdles preventing very deep gradient
decent-based neural networks from learning de-
pendencies between input and output data. As
the gradient of the error is determined at the fi-
nal output layer, multiple integration steps are
needed for the gradient to reach the layers closer
to the input layer. At each step, the gradient
is diminished slightly. In the context of RNNs,
the vanishing gradient problem materializes in
the difficulty to capture temporal dependencies
between time steps separated too far from each
other.
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Mathematical Symbols

Bim Budget imbalance.
Gatm Gain in atmospheric CO2 concentrations.
J Cost function.
Jobs The part of the cost function minimizes the dif-

ference with respect to the observations.
Jstate The part of the cost function minimizes the dif-

ference to the state vector.
λλλa The analyzed state vector. Defined in Equation 7.
λe The e-th element from state vector λλλ.
H (λλλ) Observation operator of the state vector. Also re-

ferred to as the transport model.
K (λλλ) An operator mapping the state vector to a 1× 1

degree grid.
M State transition model.
M analyzed(λλλa

t ) Transition function based on a full inversion run
using the SiB4 biosphere model. This model
serves as the target model under testing condi-
tions where fluxes cannot be transported to atmo-
spheric concentrations.

M monthly(λλλa,t) Introduced monthly mean transition model.
M prior Prior transition model.
M smoothed(λλλa,t) Current smoother implementation of the transi-

tion model.
T (FFF) Observation operator on a flux landscape.
FFF An arbitrary flux landscape.
FFFanalyzed Flux landscape optimized by a full inversion run

of the EKF which used the SiB4 model as the
prior biosphere model. Within the context of this
thesis, it is also used as Fa.

FFFbio The modeled biosphere fluxes.
FFFfire The modeled forest fire emissions fluxes.
FFFfossil The modeled fossil fuel emissions.
FFFmonthly Flux landscape estimate of forecast model

M monthly.
FFFocean The modeled biosphere fluxes.
FFFprior The prior flux landscape.
FFFsmoothed Flux landscape estimate of forecast model

M smoothed.
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HHH Linearized matrix form of observation operator
H .

KKK Kalman gain.
LLL Complete set of all effective scaling factors.
MMM Linearized matrix of state transition function M .
PPP covariance matrix λλλ.
QQQ Noise term introduced to the covariance matrix PPP

as a result of an imperfect transition model M .
RRR covariance matrix yyy◦.
VVV Matrix of values of an environmental condition.
ΛΛΛ The set of all analyzed state vectors.
λλλ The state vector. Consists of several scaling fac-

tors (λ).
λλλb The background state vector. Defined in Equa-

tion 10.
lll Vector of effective scaling factors.
vvv Exogenous variable.
yyy◦ Observations.
lr The effective scaling factor of the region r.
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Appendix A: Additional Information
A.1 Atmospheric gain
The atmospheric gain is a measure of the increase in CO2 within the atmosphere. Due to anthro-
pogenic activities, the atmospheric gain has been increasing since the industrial revolution, which
has been measured using flask measurements at various observation sites. One of these sites is the
Mauna Loa site in Hawaii. This is also one of the sites where Keeling (1960) started tracking the
CO2 and noticed a yearly increase in concentrations. He picked this site in particular as the atmo-
sphere at its location is a proper representative of the atmosphere in the northern hemisphere. He
hypothesized that this was caused by anthropogenic activities, which was confirmed several years
later (Keeling et al., 1976). His research made the scientific community aware of the possible nega-
tive effects of burning fossil fuels and provides the basis for modern research into greenhouse gasses
and global warming. As such, the measurements from the Mauna Loa measuring station are often
used as a reference for atmospheric CO2 concentrations. Figure A.1 shows how well CTE is able
to match the observations of the Mauna Loa observation site. The Manua Loa measurement site,
along with 353 other measurement sites, lies at the basis of how the results from CTE and other
atmospheric inversion methods are validated.

Figure A.1: The plot on the left shows the time series of CO2 mole fractions at the Mauna Loa
CarbonTracker observation site. In the top panel, measured mole fractions (open brown circles) are
plotted along with CarbonTracker simulated values (light blue open circles). The plot on the right
shows the distribution of the residuals between the observations and the model, which should be
unbiased (i.e., have a mean of zero) and distributed normally.
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A.2 The state vector

The essence of bias correction capabilities of the EKF lies within the state vector λλλ. In CTE, each
element in λλλ represents a scaling factor for a gridded area on the globe. The aim of the EKF is to find
values for these scaling factors such that the combined surface flux, after being transported through
the transport model, provides an optimal fit to the observations. How this is done, is discussed in
Section 1.2.1. This section provides additional information on how λλλ and its covariance structure is
derived.

When defining λλλ, all land surface of the earth is divided into 11 TransCom regions (Gurney et al.
(2003), see Figure A.2). Each TransCom region is assigned a set of parameters within λλλ. How many
is determined by how well that TransCom region is constrained by observations. As previously
mentioned, some areas (e.g. US, and Europe) are highly constrained by measurements, while others
areas (Tropics, Northern Africa) are much less (see Figure 1.2). Therefore, TransCom regions that
are on the northern hemisphere have a gridded state vector, where all elements in the state vector
work on one 1x1 degree grid-cell. It is assumed that cells within the same plant functional type (PFT)
co-vary based on distance, where grid cells closer to each other have a higher expected covariance
than cells further away (van der Laan-Luijkx et al., 2017). On the southern hemisphere, one element
is added to the state vector for each of the 19 PFTs taken into consideration. An overview of the
used PFTs and their respective predominance within Europe is shown in Table D.1. Finally, the 11
ocean TransCom regions are divided into 30 large basins encompassing large-scale ocean circulation
features (Jacobson, Mikaloff Fletcher, Gruber, Sarmiento, & Gloor, 2007a).

Due to the correlation length between elements with the same PFT within the gridded TransCom
regions, the effective degrees of freedom (DoF) within these regions are greatly reduced. The exact
number of DoF added by each TransCom region is determined by applying singular value decom-
position to the set of all analyzed state vectors ΛΛΛa. See Peters et al. (2005) for more details. As a
result, the DoFs present within the state vector are reduced to 1077.7, compared to the 9835 ele-
ments present within the state vector. For a complete overview, see Table D.2 or the diagram shown
in Figure C.1.
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et al. (2003)
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Appendix B: Supplementary Figures
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Figure B.1: Total number of observations per year. Observations originate from the sixth release of
the GLOBALVIEWplus (GV+) cooperative data product (Cox et al., 2021)
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Figure B.2: The autocorrelation and partial autocorrelation of the effective scaling factor of all
ecoregions within the Europe TransCom region. While there is a lot of variance between the corre-
lations which are deemed significant between the ecoregions, almost all of them show a clear spike
in significance at a lag of 52. Figures B.2e and B.2l also show a clear autocorrelation and partial
autocorrelation at lag=1 and lag=2.
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Figure B.3: The 95% confidence interval of the coefficients of the SARIMA models within the Eu-
rope TransCom region. The coefficients are named using the convention of Box et al. (1976). Note
that the intercept coefficient is left out. Linking these coefficients back to the (2,0,2)× (1,0,1)52
model definition, the first four coefficients relate to the non-seasonal (2,0,2) part of the model, the
5th and 6th coefficients relate to the seasonal (1,0,1)52 part, and 7th and the final coefficient is the
noise component that remained after model fitting. Overall, a clear difference is shown between the
coefficients which are significantly different from 0 between the models for each ecoregion. Figures
B.3j and B.3m show that no non-seasonal coefficients are significant, while figures B.3g and B.3o
show that no seasonal coefficients are significant. Figure B.3d shows that all coefficients are signif-
icant, while Figure B.3c shows that no coefficients except the noise coefficient are significant. The
only thing all plots have in common is that the noise coefficient is significantly greater than 0.
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Figure B.4: The performance of the monthly mean, SARIMA, and SARIMAX models on 4 years of
test data (2017-2020) compared to the prior flux model, evaluated in flux space. The x-axis repre-
sents the number of years used for training the models, where 1 training year entails the model had
been trained only on data from 2016 and 17 training years entails a model trained on the data from
2000 to 2017. The y-axis is either the mean error (ME), mean absolute error (MAE), mean abso-
lute percentage error (MAPE), root-mean-square error (RMSE) or coefficient of determination (R2),
determined by the difference between the estimated and optimized flux within the North American
boreal, North American temperate and Europe TransCom regions on a weekly basis (N=4*52=208).
As the y-axes are not aligned, the ‘target’-line is added as a visual aid representing the values a
well-trained model should approach.
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Figure B.5: The performance of the monthly mean, SARIMA, and SARIMAX models on 4 years
of test data (2017-2020) compared to the prior flux model, evaluated in flux space. The x-axis
represents the number of years used for training the models, where 1 training year entails the model
had been trained only on data from 2016 and 17 training years entails a model trained on the data
from 2000 to 2017. The y-axis is either the mean error (ME), mean absolute error (MAE), mean
absolute percentage error (MAPE), root-mean-square error (RMSE) or coefficient of determination
(R2), determined by the difference between the estimated and optimized flux within the Eurasia
boreal and Eurasia temperate TransCom regions on a weekly basis (N=4*52=208). As the y-axes
are not aligned, the ‘target’-line is added as a visual aid representing the values a well-trained model
should approach.
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Figure B.6: The performance of the monthly mean, SARIMA, and SARIMAX models on 4 years of
test data (2017-2020) compared to the prior scaling factor model of only ones, evaluated in scaling
factor space. The x-axis represents the number of years used for training the models, where 1
training year entails the model had been trained only on data from 2016 and 17 training years entails
a model trained on the data from 2000 to 2017. The y-axis is either the mean error (ME), mean
absolute error (MAE), mean absolute percentage error (MAPE), root-mean-square error (RMSE) or
coefficient of determination (R2), determined by the difference between the estimated and optimized
scaling factor within the North American boreal, North American temperate and Europe TransCom
regions on a weekly basis (N=4*52=208). As the y-axes are not aligned, the ‘target’-line is added
as a visual aid representing the values a well-trained model should approach.
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Figure B.7: The performance of the monthly mean, SARIMA, and SARIMAX models on 4 years of
test data (2017-2020) compared to the prior scaling factor model of only ones, evaluated in scaling
factor space. The x-axis represents the number of years used for training the models, where 1
training year entails the model had been trained only on data from 2016 and 17 training years entails
a model trained on the data from 2000 to 2017. The y-axis is either the mean error (ME), mean
absolute error (MAE), mean absolute percentage error (MAPE), root-mean-square error (RMSE) or
coefficient of determination (R2), determined by the difference between the estimated and optimized
scaling factor within the Eurasia boreal and Eurasia temperate TransCom regions on a weekly basis
(N=4*52=208). As the y-axes are not aligned, the ‘target’-line is added as a visual aid representing
the values a well-trained model should approach.
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Appendix C: Supplementary Diagrams
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Plant funcitonal types of ecoregions:


Europe 
Eurasia boreal
Eurasia temp.
North America boreal
North America temp.



0.5x0.5 degree grids


(based on Olson, 1992)

Boundaries of ecoregions as 

defined by Gurney et al. (2002)

Correlation length scale:


Europe: 	 	 	 	 200km
Eurasia boreal: 	 	 1000km
Eurasia temp.	 	 	 1000km
North America boreal	 300km
North America temp.	 300km

(C)

    State vector with:

Ecoregion Parameters DoF
Europe 1585 435

Eurasia boreal 2396 63
Eurasia temp. 2631 129

North America boreal 1865 184
North America temp. 1213 242

Remaining  

Downscaled to 1x1 degree grid for 19 plant functional types 

(given example only shows europe)

    State vector with:

Ecoregion Parameters DoF
South America tropical 19 3.2
South America temp. 19 2.9

Northern Africa 19 3.2
Southern Africa 19 2.5

Tropical Asia 19 2.5
Australia 19 3.4
Oceans 30 7

Ice (not optimized) 1 -

Complete state vector


9835 parameters 

~1100 DoF

legend

Data
originating
from a
database

Parameters
set by the
user

(A) (B)

(E) (D)

(F)

Figure C.1: This diagram shows the breakdown of the state vector λλλ, which scales the fluxes originating from both FFFbio and FFFocean. (A) Each
entry in the state vector scales some area within the ecoregions defined by Gurney et al. (2003). As some regions are more constrained by observations,
more parameters can be used to optimize the fit to the observations. (B) These areas are therefore gridded on a 0.5×0.5 resolution, where each cell is
labeled with the predominant plant functional type (PFT) as defined by Olson (1992). (C) Cells with the same PFT are correlated based on a chosen
correlation length in order to reduce the effective degrees of freedom (DoF) within the parameters. (D) The chosen correlation lengths within CTDAS
result in each gridded ecoregion adding 63 to 435 DoF to the final state vector. (E) The ecoregions less constrained by observations are only given 19
additional entries in λλλ, one for each plant functional type (PFT). All oceans are divided into 30 ocean basins according to the division used in Jacobson
et al. (2007a). (F) Combining all components results in a state vector of 9835 parameters and ∼ 1100 DoF

87



D
ia

gr
am

 o
f C

TE
20

18



O
bs

er
va

tio
ns

 fr
om

 in
 s

itu
 m

ea
su

re
m

en
ts

 o
r a

ir 
sa

m
pl

es
 fr

om
 fl

as
ks

 a
t 3

54
 s

ite
s 

Bi
os

ph
er

e 
m

od
el




1x
1 

de
gr

ee
 g

rid
 o

n
10

-m
in

 b
as

is
(d

at
ab

as
e:

 S
ib

C
AS

A)

O
ce

an
 m

od
el




?x
? 

de
gr

ee
 g

rid
 o

n 
3-

ho
ur

ly
 b

as
is



(d

at
ab

as
e:

 b
as

ed
 o

n
M

D
FL

 M
O

M
3)

Ba
se

lin
e 

sc
al

in
g

ve
ct

or



Fo
ss

il 
fu

el
 e

m
is

si
on

s


0.
1x

0.
1 

de
gr

ee
 g

rid
on

 m
on

th
ly

 (?
) b

as
is



(d

at
ab

as
e:

ED
G

AR
v4

.2
)

Fo
re

st
 fi

re
 e

m
is

si
on

s


0.
25

x0
.2

5 
de

gr
ee

 g
rid

on
 m

on
th

ly
 b

as
is



(d

at
ab

as
e:

 G
FE

D
v4

)

Fo
r e

ac
h 

w
ee

k 

Ti
m

e 
se

rie
s 

+ 
un

ce
rta

in
ty

 e
st

im
at

es
 o

f 3
54

 s
ite

s


En
se

m
bl

e 
Ka

lm
an

-fi
lte

r

Fi
na

l 

le
ge

nd D
at

a
or

ig
in

at
in

g
fro

m
 a

da
ta

ba
se

D
at

a
pr

od
uc

ed
 b

y 
a

m
od

el

Pa
ra

m
et

er
s

se
t b

y 
th

e
us

er

: l
on

gi
tu

de
 in

 d
eg

re
es



: l

at
itu

de
 in

 d
eg

re
es



: t

im
e 

in
 w

ee
ks

Fo
r 

M
od

el
ed

 C
O

2 
m

ol
e 

fra
ct

io
ns

Tr
an

sp
or

t m
od

el
 T

M
5

Er
ro

r b
et

w
ee

n 
m

od
el

 a
nd

 m
ea

su
re

m
en

ts

Fi
tte

d 

En
se

m
bl

e 
Ka

lm
an

-fi
lte

r



C

om
in

ed
 g

lo
ba

l c
ar

bo
n 

flu
x

(A
)

(B
)

(E
)

(D
)

(F
)

(H
)

(C
)

(G
)

Fi
gu

re
C

.2
:

(A
)

Po
st

er
io

r
flu

xe
s

ar
e

de
te

rm
in

ed
on

a
w

ee
kl

y
ba

si
s

us
in

g
da

ta
as

si
m

ila
tio

n.
(B

)
A

ba
se

lin
e

st
at

e
ve

ct
or

is
us

ed
to

co
rr

ec
tf

or
fir

st
in

di
ca

tio
ns

of
bi

as
es

w
ith

in
FF F
bi

o
an

d
FF F
oc

ea
n
.T

hi
s

is
cu

rr
en

tly
do

ne
us

in
g

E
qu

at
io

n
10

.(
C

)T
he

pr
io

rfl
ux

es
ar

e
m

ul
tip

lie
d

w
ith

th
e

ba
se

lin
e

st
at

e
ve

ct
or

,s
ta

rt
in

g
w

ith
th

e
pr

io
rfl

ux
es

of
t−

4.
(D

)T
he

re
su

lti
ng

flu
xe

s
ar

e
tr

an
sp

or
te

d
to

at
m

os
ph

er
ic

co
nc

en
tr

at
io

ns
us

in
g

th
e

T
M

5
m

od
el

(H
ui

jn
en

et
al

.,
20

10
).

(E
)T

he
es

tim
at

ed
co

nc
en

tr
at

io
ns

ar
e

m
at

ch
ed

to
th

e
ob

se
rv

at
io

ns
,d

et
er

m
in

in
g

th
e

fit
of

th
e

cu
rr

en
ts

ta
te

ve
ct

or
.

(F
)

T
he

fit
is

op
tim

iz
ed

us
in

g
th

e
E

K
F.

(G
)

T
he

op
tim

iz
ed

st
at

e
ve

ct
or

is
us

ed
as

th
e

ba
se

lin
e

fo
r

th
e

ne
xt

ite
ra

tio
n.

(F
)T

he
fin

al
st

at
e

ve
ct

or
is

de
te

rm
in

ed
af

te
rb

ei
ng

fit
te

d
to

5
w

ee
ks

of
da

ta
.

88



Prior biosphere+ocean flux
 


weekly
[mol m  s ]


Prior biosphere+ocean flux
 


weekly
[mol s ]


Surface area


[m ]


Prior biosphere+ocean flux
 


weekly 
[mol s ]


Optimized statevector
 


weekly 

[-]


Optimized biosphere+ocean flux
 


weekly 
[mol s ]


Optimized biosphere+ocean flux
 


weekly 
[mol s ]


Prior biosphere+ocean flux
 


weekly 
[mol s ]


/

Effective scaling factor

 


weekly 
[-]


Effective scaling factor

 


weekly 
[-]


FILTER

(A)

(B)

(C)

(E)

(F)

<Description>

<Dimensions>
<Frequency> 


[<Units>]
Legend:

SUM

FILTER

:  Dimension reduction through summation


:  Dimension reduction through filtration


:  Element-wise multiplication (Hadamard product)


/ :  Element-wise division (Hadamard division)


SUM

(D)
SUM

(D)
SUM

Figure C.3: Description of the aggregation procedure used to derive the target dataset. Both the biosphere fluxes (Haynes et al., 2019) and
ocean fluxes (Jacobson et al., 2007b) are reported having the units [mol ·m−2·s−1], meaning they are dependent on the surface area of the cells. This
dependency is removed by multiplying all fluxes with the surface area of the cell to which they apply (A). To move from grid-cell space to state vector
space, fluxes from all cells associated with the same state vector element are summed (B). By applying element-wise multiplication between the fluxes
associated with each state vector element and the optimized state vector, the optimized biosphere and ocean fluxes are determined (C). As explained
in section 7.1, the gridded state vector elements are summed for each ecoregion to reduce the noise and create a single flux per ecoregion (D). The
effective scaling factor is determined by applying an element-wise division of the optimized fluxes over the prior fluxes (E). The final step is to filter
out the least constrained TransCom regions (i.e. South American Tropical, South American Temperate, Northern Africa, Southern Africa, Tropical
Asia, Australia, and the oceans) (F). What is left, is the effective scaling factor of the ecoregions within the North American Boreal, North American
Temperate, Eurasia Boreal, Eurasia Temperate, and Europe TransCom regions.
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Appendix D: Supplementary Tables

Table D.1: plant functional type (PFT) categorization derived from Olson (1992), along
with their respective area converge within the TransCom regions: North American Boreal,
North American Temperate and Europe

TransCom region surface area [%]

North American
Boreal

North American
Temperatecategory PFT (Olson V 1.3a) Europe

1 Conifer Forest 22.9 14.0 14.0
2 Broadleaf Forest 0.0 2.4 2.5
3 Mixed Forest 5.9 8.1 9.1
4 Grass/Shrub 0.5 21.9 8.1
5 Tropical Forest 0.0 0.5 0.1
6 Scrub/Woods 0.0 3.6 2.8
7 Semitundra 33.6 7.6 4.9
8 Fields/Woods/Savanna 0.3 8.9 6.6
9 Northern Taiga 16.4 0.0 2.2
10 Forest/Field 0.6 10.8 11.6
11 Wetland 3.2 0.6 0.8
12 Deserts 0.0 0.2 0.1
13 Shrub/Tree/Suc 0.0 0.1 0.0
14 Crops 0.0 17.2 22.7
15 Conifer Snowy/Coastal 0.4 0.6 0.0
16 Wooded tundra 3.6 0.1 1.6
17 Mangrove 0.0 0.0 0.0
18 Ice and Polar desert 0.0 0.0 0.0
19 Water 12.6 3.4 12.9
99 All 100.0 100.0 100.0

Note: the number of PTFs has been reduced to 19 from the original 29. This was done mainly
by filling the unused categories 16, 17, and 18, and by grouping similar (from an atmospheric
inversion perspective) categories 23-26+29
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Table D.2: Used TransCom regions and the number of parameters and the
degrees of freedom added to λλλ per TransCom region

index TransCom region # parameters Correlation
length [km] DoF

1 North American Boreal 1865 300 184
2 North American Temperate 1213 300 242
3 South American Tropical 19 - 3.2
4 South American Temperate 19 - 2.9
5 Northern Africa 19 - 3.2
6 Southern Africa 19 - 2.5
7 Eurasia Boreal 2396 1000 63
8 Eurasia Temperate 2631 1000 129
9 Tropical Asia 19 - 2.5
10 Australia 19 - 3.4
11 Europe 1585 200 435
12 Ocean 30 - 7

All 9835 - 1077.7

Table D.3: Overview of the percentages of plausible scaling factors within
each gridded TransCom region, both for the original scaling factors and
for the effective scaling factors per ecoregion. For a description of the
aggregation procedure, see Figure C.3

TransCom region % plausible
original scaling factors

% plausible
effective scaling factors

North American Boreal 58.7 66.1
North American Temperate 51.0 54.5
Eurasia Boreal 55.3 61.6
Eurasia Temperate 59.8 56.5
Europe 52.4 74.3
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Table D.4: Look-up table of the indices of the ecoregions included in Part II of this thesis

TransCom region

North American
Boreal

North American
Temperate

Eurasia
Boreal

Eurasia
TemperatePFT (Olson V 1.3a) Europe

Conifer Forest 1.0 20.0 115.0 134.0 191.0
Broadleaf Forest - 21.0 116.0 135.0 192.0
Mixed Forest 3.0 22.0 117.0 136.0 193.0
Grass/Shrub 4.0 23.0 118.0 137.0 194.0
Tropical Forest - 24.0 - 138.0 195.0
Scrub/Woods - 25.0 - 139.0 196.0
Semitundra 7.0 26.0 121.0 140.0 197.0
Fields/Woods/Savanna 8.0 27.0 122.0 141.0 198.0
Northern Taiga 9.0 - 123.0 - 199.0
Forest/Field 10.0 29.0 124.0 143.0 200.0
Wetland 11.0 30.0 125.0 144.0 201.0
Deserts - 31.0 - 145.0 202.0
Shrub/Tree/Suc - 32.0 - 146.0 -
Crops - 33.0 128.0 147.0 204.0
Conifer Snowy/Coastal 15.0 34.0 - - -
Wooded tundra 16.0 35.0 130.0 - 205.0
Mangrove - - - - -
Ice and Polar desert - - - - -
Water 19.0 38.0 - 152.0 209.0

Note The PFTs which do not have an index within some TransCom regions are not the dominant PFT in any
of the 1×1 degree grid cells of this TransCom region
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Table D.5: Overview of the selected environmental conditions which could potentially influ-
ence the state vector. This selection is based on the expert judgment of A. van der Woude.
The ECMWF index can be used to find additional information on the variable. If reading a
digital version, the index has a hyperlink to the relevant ECMWF webpage.

Abbreviation Full name ECMWF pa-
rameter ID

Used aggregation methods

blh Boundary layer height 159 MAX
cp Convective precipitation 143 MAX, SUM
d2m 2 metre dewpoint tem-

perature
168 MIN, MAX, AVG

g10m 10 metre wind gust 49 MAX
lsp Large-scale precipitation 142 SUM
s10m* 10 meter wind speed N.A. MIN, MAX, AVG
sd Snow depth 141 MIN, MAX
sf Snowfall 144 AVG, MAX
skt Skin temperature 235 MIN, MAX, AVG
slhf Surface latent heat flux 147 MIN, MAX, AVG
src Skin reservoir content 198 MIN, AVG
sshf Surface sensible heat

flux
146 MIN, MAX, AVG

ssr Surface net solar radia-
tion

176 MAX, AVG

ssrd Surface solar radiation
downwards

169 MIN, MAX, AVG

swvl1 Volumetric soil water
layer 1

39 MIN, MAX

t2m 2 metre temperature 167 MIN, MAX, AVG
u10m 10 metre U wind compo-

nent
165 AVG

v10m 10 metre V wind compo-
nent

166 AVG

* - The s10m has been calculated by
√

u10m2 ⊙ v10m2, where ⊙ is an element-wise multiplication.
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Table D.6: Overview of how the monthly average model mitigates the encountered problems and
whether the model is able to utilize potential sources of information.

Priority Problem/
information
source

Mitigated/
utilised

Explanation

1 Limited data
availability

✓ The monthly mean can be determined using only a single state vector.
Only a limited amount of state vector is expected to be needed

2 Integration
within CT-
DAS

✓ Determining the average is very cost efficient and could potentially be
done every iteration of the EKF. The most efficient implementation
would consist of determining the average once a year.

3 Noise within
data

✓ As the average is based on multiple several weeks within each month,
several data points are available for determining the mean. The odds of
the same noise-induced anomaly occurring often enough to distort the
mean value is as a result limited. Under such circumstances, a mean, or
rolling-mean, model is a simple and efficient way of smoothing the sig-
nal and reducing noise, provided no extreme anomalies exist (Savitzky
& Golay, 1964). If those extreme anomalies do exist, a (rolling-)median
model could be considered instead.

4 Temporal de-
pendencies

∼ By design, the monthly mean model captures the monthly trends ob-
served within Figure 1.3. However, the shorter temporal dependencies
spanning only a few weeks (e.g. those induced by heatwaves) mentioned
in the introduction of Part II are almost entirely disregarded. The model
would also be sub-optimal if the mean scaling factor within eco-regions
is non-stationary. De- and/or reforestation could for instance affect the
biases within the biosphere model, affecting the mean scaling factor over
time.

5 Exogenous
variables

× No, the monthly mean model is incapable of utilizing exogenous vari-
ables. A potential variant of the monthly mean model could somehow
add weight to each scaling factor based on a certainty value correlated to
some environmental conditions, but the viability of this approach should
be tested first.

6 Spatial depen-
dencies

× No, no spatial dependencies are utilised. Also, no remotely viable
method for including these dependencies within the monthly-mean
model comes to mind.
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Table D.7: Overview of how the SARIMA model mitigates the encountered problems and whether
the model can utilize potential sources of information.

Priority Problem/
information
source

Mitigated/
utilised

Explanation

1 Limited data
availability

✓ SARIMA is a version of the ARMA model, which is well
equipped to train on a single and short time-series (?, ?), and is
considered to be a classical method for stochastic process model-
ing (Güldal & Tongal, 2010).

2 Integration
within CT-
DAS

∼ The SARIMA algorithm is relatively simple and can easily be
trained yearly, provided that the number of target variables is lim-
ited. The algorithm provides a forecast model for a single target
variable. As such, a separate model is needed for every target
variable. Making a model for every element within the state vec-
tor might therefore be infeasible. However, SARIMA can be used
on an aggregated version of the state vector (i.e. one aggregated
by eco-region).

3 Noise within
data

∼ SARIMA can accurately capture wide-sense stationary stochastic
processes (S. Wang, Li, & Lim, 2019), meaning that the mean
and the correlation function of the process should be constant. As
such, the SARIMA algorithm is robust to noise, if this noise is
stationary. If the noise varies over time or is correlated to external
variables, this robustness to noise could deteriorate.

4 Temporal de-
pendencies

✓ The SARIMA model uses seasonal and shorter temporal depen-
dencies by design.

5 Exogenous
variables

× No, the bare SARIMA model is not able to utilize exogenous vari-
ables

6 Spatial de-
pendencies

× No, the bare SARIMA model is not able to utilize spatial depen-
dencies
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Table D.8: Overview of how the SARIMAX model mitigates the encountered problems and whether
the model can utilize potential sources of information.

Priority Problem/
information
source

Mitigated/
utilised

Explanation

1 Limited data
availability

✓ same as SARIMA, see Table D.7

2 Integration
within CT-
DAS

∼ same as SARIMA, see Table D.7

3 Noise within
data

∼ same as SARIMA, see Table D.7

4 Temporal de-
pendencies

✓ same as SARIMA, see Table D.7

5 Exogenous
variables

∼ The SARIMAX algorithm does allow for the utilization of ex-
ogenous variables. However, adding too many could impede the
integration within CTDAS as it substantially increases the com-
putational costs. The used variable should therefore be selected
carefully.

6 Spatial de-
pendencies

× No, the bare SARIMAX model is not able to utilize spatial depen-
dencies
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